Skip to main content
Log in

Phase Retrieval for \(L^2([-\pi ,\pi ])\) via the Provably Accurate and Noise Robust Numerical Inversion of Spectrogram Measurements

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we focus on the approximation of smooth functions \(f: [-\pi , \pi ] \rightarrow {\mathbb {C}}\), up to an unresolvable global phase ambiguity, from a finite set of Short Time Fourier Transform (STFT) magnitude (i.e., spectrogram) measurements. Two algorithms are developed for approximately inverting such measurements, each with theoretical error guarantees establishing their correctness. A detailed numerical study also demonstrates that both algorithms work well in practice and have good numerical convergence behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Given \(f: {\mathbb {R}} \rightarrow {\mathbb {C}}\), let \(f \vert _{[-\pi ,\pi ]}\) be f with its domain restricted to \([-\pi , \pi ]\). Note that the Fourier transform of a function \(f \in L^2(\mathbbm {R})\) with support in \((-\pi , \pi )\) yields, when evaluated on the integers, the Fourier series coefficients of \(f \vert _{[-\pi ,\pi ]}\) up to a \(2 \pi \) factor. Using this relationship, we aim herein to approximate such functions on \([-\pi , \pi ]\) using trigonometric polynomials. In a minor abuse of notation motivated by this strategy, we will use \({\hat{f}}\) to refer to two related objects in this section: \({\hat{f}}\) will refer to both the suitably renormalized Fourier transform of f as a function on \(\mathbbm {R}\), and, when restricted to \(\mathbbm {Z}\), to the Fourier series coefficients of \(f \vert _{[-\pi ,\pi ]}\) defined as per (9).

  2. Numerical implementations of the methods proposed here are available at https://bitbucket.org/charms/blockpr.

  3. [26] used a different normalization of the Fourier transform than we use here, so their Lemma 7 will have a different power of d.

  4. Numerical implementations of the methods proposed here are available at https://bitbucket.org/charms/blockpr.

  5. With filter order increasing with SNR; we used a 2nd-order filter at 10 dB SNR and a 12th-order filter at 60 dB SNR.

  6. We use the Iterated Tikhonov method (see [8, 26, Algorithm 3]) to invert the Vandermonde system in Step 4 of Algorithm 2.

  7. using the alternate implementation—with (34) utilized in place of (35) in Step 2 of the Algorithm—as described in Sect. 5

References

  1. Akutowicz, E.J.: On the determination of the phase of a Fourier integral. I. Trans. Am. Math. Soc. 83(1), 179–192 (1956). https://doi.org/10.2307/1992910

    Article  MathSciNet  MATH  Google Scholar 

  2. Akutowicz, E.J.: On the determination of the phase of a Fourier integral. II. Proc. Am. Math. Soc. 8(2), 234–238 (1957). https://doi.org/10.2307/2033718

    Article  MathSciNet  MATH  Google Scholar 

  3. Alaifari, R., Wellershoff, M.: Uniqueness of stft phase retrieval for bandlimited functions. Appl. Comput. Harmon. Anal. 50, 34–48 (2021). https://doi.org/10.1016/j.acha.2020.08.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Alaifari, R., Daubechies, I., Grohs, P., Yin, R.: Stable phase retrieval in infinite dimensions. Found. Comput. Math. 19(4), 869–900 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J. Imaging Sci. 7(1), 35–66 (2014)

    Article  MATH  Google Scholar 

  6. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A 19(7), 1334–1345 (2002)

    Article  MathSciNet  Google Scholar 

  8. Buccini, A., Donatelli, M., Reichel, L.: Iterated tikhonov regularization with a general penalty term. Numer. Linear Algebra Appl. 24(4), 2089 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM Rev. 57(2), 225–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal. 39(2), 277–299 (2015). https://doi.org/10.1016/j.acha.2014.09.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, C., Daubechies, I., Dym, N., Lu, J.: Stable phase retrieval from locally stable and conditionally connected measurements. arXiv:2006.11709 (2020)

  12. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)

    Article  Google Scholar 

  13. Fienup, C., Dainty, J.: Phase retrieval and image reconstruction for astronomy. Image Recov. Theory Appl. 1, 231–275 (1987)

    Google Scholar 

  14. Filbir, F., Krahmer, F., Melnyk, O.: On recovery guarantees for angular synchronization. arXiv:2005.02032 (2020)

  15. Forstner, A., Krahmer, F., Melnyk, O., Sissouno, N.: Well conditioned ptychograpic imaging via lost subspace completion. Inverse Problems. arXiv:2004.04458 (2020)

  16. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  17. Griffin, D., Lim, J.: Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(2), 236–243 (1984)

    Article  Google Scholar 

  18. Gröchenig, K.: Phase-retrieval in shift-invariant spaces with gaussian generator. J. Fourier Anal. Appl. (2020). https://doi.org/10.1007/s00041-020-09755-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Gross, D., Krahmer, F., Kueng, R.: Improved recovery guarantees for phase retrieval from coded diffraction patterns. Appl. Comput. Harmonic Anal. 42, 37–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iwen, M.A., Viswanathan, A., Wang, Y.: Fast phase retrieval from local correlation measurements. SIAM J. Imaging Sci. 9(4), 1655–1688 (2016). https://doi.org/10.1137/15m1053761

    Article  MathSciNet  MATH  Google Scholar 

  21. Iwen, M.A., Merhi, S., Perlmutter, M.: Lower Lipschitz bounds for phase retrieval from locally supported measurements. Appl. Comput. Harmon. Anal. 47(2), 526–538 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iwen, M.A., Preskitt, B., Saab, R., Viswanathan, A.: Phase retrieval from local measurements: improved robustness via eigenvector-based angular synchronization. Appl. Comput. Harmon. Anal. 48, 415–444 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jaming, P.: Uniqueness results in an extension of Pauli’s phase retrieval problem. Appl. Comput. Harmon. Anal. 37(3), 413–441 (2014). https://doi.org/10.1016/j.acha.2014.01.003

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, J.M.: Introduction to Smooth Manifolds, 2nd edn. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9982-5

    Book  Google Scholar 

  25. Marchesini, S., Tu, Y.-C., Wu, H.-t: Alternating projection, ptychographic imaging and phase synchronization. Appl. Comput. Harmon. Anal. 41(3), 815–851 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perlmutter, M., Merhi, S., Viswanathan, A., Iwen, M.: Inverting spectrogram measurements via aliased Wigner distribution deconvolution and angular synchronization. Inf. Infer. J. IMA (2020). https://doi.org/10.1093/imaiai/iaaa023

    Article  MATH  Google Scholar 

  27. Rodenburg, J.: Ptychography and related diffractive imaging methods. Adv. Imaging Electron. Phys. 150, 87–184 (2008)

    Article  Google Scholar 

  28. Rosenblatt, J.: Phase retrieval. Commun. Math. Phys. 95, 317–343 (1984). https://doi.org/10.1007/BF01212402

    Article  MathSciNet  MATH  Google Scholar 

  29. Thakur, G.: Reconstruction of bandlimited functions from unsigned samples. J. Fourier Anal. Appl. 17(4), 720–732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Viswanathan, A., Iwen, M., Wang, Y.: BlockPR: Matlab software for phase retrieval using block circulant measurement constructions and angular synchronization, version 2.0. https://bitbucket.org/charms/blockpr (2016)

  31. Walther, A.: The question of phase retrieval in optics. Opt. Acta Int. J. Opt. 10(1), 41–49 (1963)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Mark Iwen was supported in part by NSF DMS 1912706. Nada Sissouno acknowledges partial funding from an Entrepreneurial Award in the Program “Global Challenges for Women in Math Science” funded by the Faculty of Mathematics at the Technical University of Munich. Aditya Viswanathan was supported in part by NSF DMS 2012238.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Perlmutter.

Additional information

Communicated by Philippe Jaming.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Proofs of Lemma 2.3

Proof

Let \(g{:}{=}P_{\mathcal {S}}f\) and \(h{:}{=}P_{\mathcal {R}}m\), where \(P_{\mathcal {S}}\) and \(P_{\mathcal {R}}\) are the Fourier projection operators defined as in (11). Since g and h are trigonometric polynomials and \({\mathcal {R}} + {\mathcal {S}} \subseteq {\mathcal {D}}\), we may write

$$\begin{aligned}&\int _{-\pi }^{\pi }g(x)h(x-{{\tilde{\ell }}})\mathbbm {e}^{-\mathbbm {i}x\omega }dx \\&\quad = \sum _{m\in {\mathcal {R}}} \sum _{n\in {\mathcal {S}}} {\widehat{g}}(n) {\widehat{h}}(m) \mathbbm {e}^{-\mathbbm {i}m{{\tilde{\ell }}}}\int _{-\pi }^{\pi } \mathbbm {e}^{\mathbbm {i}(m+n-\omega )x}dx\\&\quad =\sum _{m\in {\mathcal {R}}} \sum _{n\in {\mathcal {S}}} {\widehat{g}}(n) {\widehat{h}}(m) \mathbbm {e}^{-\mathbbm {i}m{{\tilde{\ell }}}} \frac{2\pi }{d}\sum _{p\in {\mathcal {D}}} \mathbbm {e}^{2\pi \mathbbm {i} p(n+m-\omega )/d}\\&\quad = \frac{2\pi }{d}\sum _{p\in {\mathcal {D}}}\left( \sum _{n\in {\mathcal {S}}} {\widehat{g}}(n) \mathbbm {e}^{2\pi \mathbbm {i} pn/d}\right) \left( \sum _{m\in {\mathcal {R}}}{\widehat{h}}(m) \mathbbm {e}^{\left( \left( \frac{2\pi \mathbbm {i}m}{d}\right) \left( p-\ell \right) \right) }\right) \mathbbm {e}^{-2\pi \mathbbm {i} m p\omega /d}\\&\quad = \frac{2\pi }{d}\sum _{p\in {\mathcal {D}}} g\left( \frac{2\pi p}{d}\right) h\left( \frac{2\pi (p-\ell )}{d}\right) \mathbbm {e}^{-2\pi \mathbbm {i} p\omega /d} \\&\quad =\frac{2\pi }{d}\sum _{p\in {\mathcal {D}}} x_p y_{p-\ell } \mathbbm {e}^{-2\pi \mathbbm {i} \omega p/d}. \end{aligned}$$

\(\square \)

Appendix B: The Proofs of Propositions 3.2 and 3.4

The Proof of Proposition 3.2

We first note that

$$\begin{aligned}{\widehat{z}}_q={\left\{ \begin{array}{ll}{\widehat{m}}(q)&{}\text {if } \vert q\vert \le \rho /2,\\ 0 &{}\text {if } \vert q\vert > \rho /2. \end{array}\right. } \end{aligned}$$

Therefore, for all \(\vert p\vert \le \kappa -1\), we have

$$\begin{aligned} \left( \widehat{{\textbf{z}}}\circ S_{p}\overline{\widehat{{\textbf{z}}}^{}}\right) _{q}={\left\{ \begin{array}{ll} {\widehat{m}}(q){\widehat{m}}(p+q) &{} \text {if }-\rho /2\le q,\,p+q \le \rho /2,\\ 0 &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

For any \(\vert p\vert \le \kappa -1,\) let

$$\begin{aligned} {\mathcal {I}}_{p}{:}{=}\{q\in {\mathcal {D}}:-\rho /2\le q\le \rho /2\quad \text {and } -\rho /2\le q+p\le \rho /2\}. \end{aligned}$$

One may check that

$$\begin{aligned} {\mathcal {I}}_{p} = {\left\{ \begin{array}{ll} {[}-\frac{\rho }{2}-p, \frac{\rho }{2}]\cap {\mathbb {Z}}&{}\text {if }p<0\\ {[}-\frac{\rho }{2}, \frac{\rho }{2}-p]\cap {\mathbb {Z}} &{}\text {if }p\ge 0 \end{array}\right. }. \end{aligned}$$

Therefore, making a simple change of variables in the case \(p<0,\) we have that

$$\begin{aligned} \mathbf {F_{d}}\left( \widehat{{\textbf{z}}}\circ S_{p}\overline{\widehat{{\textbf{z}}}^{}}\right) _{q}&=\frac{1}{d}\sum _{\ell \in {\mathcal {I}}_{p}}{\widehat{m}}(\ell ){\widehat{m}}(p+\ell )\mathbbm {e}^{-2\pi \mathbbm {i}q\ell /d}=\frac{1}{d}\sum _{\ell =-\rho /2}^{\rho /2-\vert p\vert }{\widehat{m}}(\ell ){\widehat{m}}\left( \ell +\vert p\vert \right) \mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}, \end{aligned}$$

where \(\mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}\) is a unimodular complex number depending on pq and \(\ell .\) Using the Assumptions (23) and (24), we see that

$$\begin{aligned} \bigg \vert \frac{1}{d}\sum _{\ell =-\rho /2+1}^{\rho /2-\vert p\vert }{\widehat{m}}(\ell ){\widehat{m}}(\ell +\vert p\vert )\mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}\bigg \vert&\le \frac{\rho }{d} \left| {\widehat{m}}\left( \frac{-\rho }{2}+1\right) \right| \left| {\widehat{m}}\left( \frac{-\rho }{2}+1+\vert p\vert \right) \right| \\&\le \frac{1}{2d} \left| {\widehat{m}}\left( \frac{-\rho }{2}\right) \right| \left| {\widehat{m}}\left( \frac{-\rho }{2}+\vert p\vert \right) \right| . \end{aligned}$$

With this, we may use the reverse triangle inequality to see

$$\begin{aligned} \bigg \vert \mathbf {F_{d}}\left( \widehat{{\textbf{z}}}\circ S_{p}\overline{\widehat{{\textbf{z}}}^{}}\right) _{q}\bigg \vert&=\bigg \vert \frac{1}{d}\sum _{\ell =-\rho /2}^{\rho /2-\vert p\vert }{\widehat{m}}(\ell ){\widehat{m}}(\ell +\vert p\vert )\mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}\bigg \vert \\&\ge \frac{1}{d} \bigg \vert {\widehat{m}}\left( \frac{-\rho }{2}\right) \bigg \vert \left| {\widehat{m}}\left( \frac{-\rho }{2}+\vert p\vert \right) \right| \\&\quad - \frac{1}{d}\bigg \vert \! \sum _{\ell =-\rho /2+1}^{\rho /2-\vert p\vert }\! \! \! \! \! {\widehat{m}}(\ell ){\widehat{m}}(\ell +\vert p\vert )\mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}\bigg \vert \\&\ge \frac{1}{2d} \left| {\widehat{m}}\left( \frac{-\rho }{2}\right) \right| \left| {\widehat{m}}\left( \frac{-\rho }{2}+\vert p\vert \right) \right| \\&\ge \frac{1}{2d} \left| {\widehat{m}}\left( \frac{-\rho }{2}\right) \right| \left| {\widehat{m}}\left( \frac{-\rho }{2}+\kappa -1\vert \right) \right| . \end{aligned}$$

\(\square \)

The Proof of Proposition 3.4

First, we note that by applying Lemma 3.3, and setting \(p=\omega , q=\ell \), we have

$$\begin{aligned} \mu _2&= \inf _{\omega \in [2\kappa -1]_c,\ell \in [2s-1]_c} \vert (\mathbf {F_d}(\widehat{{\textbf{z}}}\circ S_{\ell }\overline{\widehat{{\textbf{z}}}^{}}))_\omega \vert \\ {}&=\frac{1}{d}\inf _{\omega \in [2\kappa -1]_c,\ell \in [2s-1]_c} \vert (\mathbf {F_d}({\textbf{z}}\circ S_{\omega }\overline{{\textbf{z}}}))_\ell \vert \\ {}&=\frac{1}{d}\inf _{p\in [2\kappa -1]_c,q\in [2s-1]_c} \vert (\mathbf {F_d}({\textbf{z}}\circ S_{p}\overline{{\textbf{z}}}))_q\vert . \end{aligned}$$

For \(\vert p\vert \le \kappa -1\), we have

$$\begin{aligned} \left( {\textbf{z}}\circ S_{p}\overline{{\textbf{z}}}\right) _{q}={\left\{ \begin{array}{ll} z_q\overline{z_{p+q}} &{} \text {if }n\le q,p+q \le n+{{\tilde{\delta }}}-1,\\ 0 &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

For any \(\vert p\vert \le \kappa -1,\) let

$$\begin{aligned} {\mathcal {I}}_{p}{:}{=}\{q\in {\mathcal {D}}:n\le q\le n+{{\tilde{\delta }}}-1\quad \text {and}\quad n\le q+p\le n+{\tilde{\delta }}-1\}. \end{aligned}$$

One may check that

$$\begin{aligned} {\mathcal {I}}_{p} = {\left\{ \begin{array}{ll} {[}n-p, n+{{\tilde{\delta }}}-1]\cap {\mathbb {Z}}&{}\text {if }p<0,\\ {[}n, n+{{\tilde{\delta }}}-1-p]\cap {\mathbb {Z}}&{}\text {if }p\ge 0. \end{array}\right. } \end{aligned}$$

Therefore, making a simple change of variables in the case \(p<0,\) we have that in either case

$$\begin{aligned}\left| \mathbf {F_{d}}\left( {\textbf{z}}\circ S_{p}\overline{{\textbf{z}}}\right) _{q}\right|&=\frac{1}{d}\bigg \vert \sum _{\ell \in {\mathcal {I}}_{p}}z_\ell \overline{z_{p+\ell }}\mathbbm {e}^{-2\pi \mathbbm {i}\ell q/d}\bigg \vert =\frac{1}{d}\bigg \vert \sum _{\ell =n}^{n+{{\tilde{\delta }}}-1-\vert p\vert }z_{\ell }\overline{z_{\ell +\vert p\vert }}\mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}\bigg \vert , \end{aligned}$$

where \(\mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}\) is a unimodular complex number depending on pq and \(\ell .\) Using the Assumptions (37) and (38) we see that

$$\begin{aligned} \bigg \vert \frac{1}{d}\sum _{\ell =n+1}^{n+{{\tilde{\delta }}}-1-\vert p\vert }z_\ell \overline{z_{\ell +\vert p\vert }}\mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}\bigg \vert \le \frac{{\tilde{\delta }} }{d} \left| z_{n+1}\right| \left| z_{n+1+\vert p\vert }\right| \le \frac{1}{2d} \vert z_n\vert \vert z_{n+\vert p\vert }\vert . \end{aligned}$$

With this,

$$\begin{aligned} \left| F_{d}\left( {\textbf{z}}\circ S_{p}\overline{{\textbf{z}}}\right) _{q}\right|&=\bigg \vert \frac{1}{d}\sum _{\ell =n}^{n+{{\tilde{\delta }}}-1-\vert p\vert }z_{\ell }\overline{z_{\ell +\vert p\vert }}\mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}\bigg \vert \\&\ge \frac{1}{d} \vert z_n\vert \vert z_{n+\vert p\vert }\vert - \bigg \vert \frac{1}{d}\sum _{\ell =n+1}^{n+{{\tilde{\delta }}}-1-\vert p\vert }z_\ell \overline{z_{\ell +\vert p\vert }}\mathbbm {e}^{\mathbbm {i}\phi _{p,q,\ell }}\bigg \vert \\&\ge \frac{1}{2d}\vert z_n\vert \vert z_{n+\vert p\vert }\vert \ge \frac{1}{2d}\vert z_n\vert \vert z_{n+\kappa -1}\vert . \end{aligned}$$

Thus, the proof is complete. \(\square \)

Appendix C: The Proof of Lemma 4.5

Proof

Our proof requires the following sublemma which shows that, if \(n\in L_f\), then Algorithm 3 used in the definition of \(\alpha _n\) will only select indices \(n_\ell \) corresponding to large Fourier coefficients.

Lemma C.1

Let \(n\in L_f\), and let \(n_0,\ldots , n_\zeta \) be the sequence of indices as introduced in the definition of \(\alpha _n\). Then

$$\begin{aligned} \vert {\widehat{f}}(n_\ell )\vert \ge \frac{\vert {\widehat{f}}(n)\vert }{2} \end{aligned}$$

for all \(0\le \ell \le \zeta \).

Proof

When \(\ell =\zeta \), the claim is immediate from the fact that \(n_\zeta =n\). For all \(0\le \ell \le \zeta -1\), the definition of \(n_\ell \) implies that there exists an interval \(I_\ell \), centered at some point a with \(\vert a\vert \le \vert n\vert \), such that the length of \(I_\ell \) is at most \(\beta \) and

$$\begin{aligned} a_{n_\ell }=\max _{m\in I_\ell } a_m. \end{aligned}$$

Letting \(\epsilon =\sqrt{3\Vert {\textbf{N}}\Vert _\infty }\), we see that by (45) and Remark 1.5

$$\begin{aligned} \vert {\widehat{f}}(n_\ell )\vert&\ge a_{n_\ell }-\epsilon =\max _{m\in I_\ell } a_m-\epsilon \ge \max _{m\in I_\ell } \vert {\widehat{f}}(m)\vert -2\epsilon \ge \vert {\widehat{f}}(n)\vert -2\epsilon . \end{aligned}$$

The result now follows from noting that \(\epsilon <\frac{\vert {\widehat{f}}(n)\vert }{4}\) for all \(n\in L_f\). \(\square \)

With Lemma C.1 established, we may now prove Lemma 4.5. Let \(n\in L_f\) and let \(n_0,\ldots n_\zeta \) be the sequence describe in the definition of \(\alpha _n\). For \(0\le \ell \le \zeta -1\), let \(t_{\ell } {:}{=}{\widehat{f}}(n_{\ell +1})\overline{{\widehat{f}}(n_{\ell })^{}}\), \(a'_{\ell } {:}{=}{\widehat{f}}(n_{\ell +1})\overline{{\widehat{f}^{}}(n_{\ell })}+N_{n_{\ell +1},n_{\ell }}\), and \(N'_{\ell }{:}{=}N_{n_{\ell +1},n_{\ell }}\). Consider the triangle with sides \(a'_{\ell }\), \(t_{\ell }\), and \(N'_{\ell }\) with angles \(\theta _{\ell } =\vert \arg (a'_{\ell })-\arg (t_{\ell })\vert \) and \(\phi _{\ell } = \vert \arg (a'_{\ell })-\arg (N'_{\ell })\vert \), as illustrated in Fig. 6.

Fig. 6
figure 6

Triangle in the complex domain

By the law of sines and Lemma C.1, we get that

$$\begin{aligned} \vert \sin (\theta _{\ell })\vert = \left| \frac{N_{\ell }'}{t_{\ell }}\sin (\phi _{\ell })\right| \le \frac{\Vert {\textbf{N}}\Vert _\infty }{\vert {\widehat{f}}(n_{\ell })\vert \vert {\widehat{f}}(n_{\ell +1})\vert }\le \frac{4\Vert {\textbf{N}}\Vert _\infty }{\vert {\widehat{f}}(n)\vert ^2} \end{aligned}$$
(C1)

for all \(0\le \ell \le \zeta \). By the definition of \(L_f\) and Lemma C.1, we have that for all \(\ell \)

$$\begin{aligned} \vert N'_\ell \vert \le \Vert {\textbf{N}}\Vert _\infty \le \frac{\vert \widehat{f(n)}\vert ^2}{4}\le \vert {\widehat{f}}(n_\ell )\vert \vert {\widehat{f}}(n_{\ell +1})\vert =\vert t_\ell \vert . \end{aligned}$$

Therefore, \(0\le \theta _\ell \le \frac{\pi }{2}\), and so by (C1), we have

$$\begin{aligned} \vert \theta _{\ell }\vert \le \frac{\pi }{2}\,\vert \sin (\theta _{\ell })\vert \le 2\pi \,\frac{\Vert {\textbf{N}}\Vert _\infty }{\vert {\widehat{f}}(n)\vert ^2}. \end{aligned}$$

By definition \(\tau _{n}=\sum _{\ell =0}^{\zeta -1} \arg (t_{\ell })\) and \( \alpha _{n}=\sum _{l=0}^{\zeta -1} \arg (a'_{\ell }) \). Therefore, we have

$$\begin{aligned} \vert \mathbbm {e}^{\mathbbm {i}\tau _{n}}-\mathbbm {e}^{\mathbbm {i}\alpha _{n}}\vert \le \vert \alpha _{n}-\tau _{n}\vert&=\bigg \vert \sum _{\ell =0}^{\zeta -1} \arg (a'_{\ell })-\arg (t_{\ell }) \bigg \vert =\bigg \vert \sum _{\ell =0}^{\zeta -1} \theta _{\ell }\bigg \vert \le 2\pi b\frac{\Vert {\textbf{N}}\Vert _\infty }{\vert {\widehat{f}}(n)\vert ^2}. \end{aligned}$$

From the definition of \(n_\ell \), we have

$$\begin{aligned} \vert n_\ell -n_{\ell -1}\vert \ge \gamma -\beta \ge \frac{\gamma }{2} \end{aligned}$$

for all \(1\le \ell \le \zeta -1\). Therefore, the path length \(\zeta \) is bounded by

$$\begin{aligned} \zeta \le \frac{\vert n-n_0\vert }{\min \vert n_\ell -n_{\ell -1}\vert }\le \frac{2d}{\gamma }. \end{aligned}$$

Thus, we have

$$\begin{aligned} \vert \mathbbm {e}^{\mathbbm {i}\tau _{n}}-\mathbbm {e}^{\mathbbm {i}\alpha _{n}}\vert \le 2\pi b\frac{\Vert {\textbf{N}}\Vert _\infty }{\vert {\widehat{f}}(n)\vert ^2} \le \frac{4\pi d}{\gamma }\frac{\Vert {\textbf{N}}\Vert _\infty }{\vert {\widehat{f}}(n)\vert ^2} \end{aligned}$$

as desired. \(\square \)

Appendix D: Additional Experiments

In this section, we provide additional numerical simulations studying the empirical convergence behavior of Algorithms 1 and 2. We start with a study of the convergence behavior of Algorithm 1. Here, we reconstruct the same test function using different discretization sizes d (with \(\rho \) chosen to be \(\min \{ (d-5)/2, 16\lfloor \log _2(d)\rfloor \}\) and \(\kappa =\rho -1\)), where the total number of phaseless measurements used is \(Ld=(2\rho -1)d\). Figure 7 plots representative reconstructions (of the real part of the test function) for two choices of d (\(d=33\) and \(d=1025\)). We note that the (smooth) test function illustrated in the figure has several sharp and closely separated gradients, making the reconstruction process challenging. This is evident in the partial Fourier sums (\(P_Nf\)) plotted for reference alongside the reconstructions from Algorithm 1 (\(f_e\)). For small d and \(\rho \), we observe oscillatory behavior similar to that seen in the Gibbs phenomenon. Nevertheless, we see that the proposed algorithm closely tracks the performance of the partial Fourier sum, with reconstruction quality improving significantly as d (and \(\rho \)) increases.

Fig. 7
figure 7

Evaluating the convergence behavior of Algorithm 1. Figure plots reconstructions of the real part of the test function at \(d=33\) and \(d=1025\) (along with an expanded view of the reconstruction in [0, 1]) on a discrete equispaced grid in \([-\pi , \pi ]\) of 7003 points; we set \(\rho =\min \{ (d-5)/2, 16\lfloor \log _2(d)\rfloor \}\) and \(\kappa =\rho -1\)

Fig. 8
figure 8

Evaluating the convergence behavior of Algorithm 2. Figure plots reconstructions of the real part of the test function at \(d=57\) and \(d=921\) (along with an expanded view of the reconstruction in [0, 1]) on a discrete equispaced grid in \([-\pi , \pi ]\) of 7003 points; we set \(K=d/3,\delta =(K+1)/2\) and \(\kappa =\delta -1\)

We next evaluate the convergence behavior of AlgorithmFootnote 7 2 by reconstructing the same test function using different discretization sizes d (with \(K=d/3\), \(\delta =(K+1)/2\), \(\kappa =\delta -1\) and \(s=\kappa -1\)). Figure 8 plots representative reconstructions (of the real part of the test function) for two choices of d (\(d=57\) and \(d=921\)). As in Fig. 7, we note that the (smooth) test function has several sharp and closely separated gradients, making the reconstruction process challenging. Again, the partial Fourier sums (\(P_Nf\)) plotted alongside the reconstructions from Algorithm 2 (\(f_e\)) exhibit Gibbs-like oscillatory behavior for small d and \(\kappa \). Nevertheless, we see that the proposed algorithm closely tracks the performance of the partial Fourier sum, with reconstruction quality improving significantly as d (and \(\delta ,\kappa \)) increases.

Appendix E: Results from Previous Work

The following is a restatement of Theorem 4 of [26] updated to use the notation of this paper. Notably, in this paper we use a different normalization of the Fourier transform (our \(\mathbf {F_d}\) is equal to the \(F_d\) from [26] divided by d). We also note that the measurements \({\textbf{T}}'\) considered here differ by a factor of \(\frac{4\pi }{d^2}\) from the measurements Y considered in [26]. Lastly, we note that the summations in [26] take place over a different string of d consecutive integers. However, this makes no difference do the the periodicity of the complex exponential function.

Theorem E.1

[26, Theorem 4] Let \(\tilde{{\textbf{T}}}\) be as in (16). Then for any \(\omega \in \left[ K\right] _{c}\) and \(\ell \in \left[ L\right] _{c}\),

$$\begin{aligned}&\frac{{\widetilde{T}}_{\ell ,\omega }-{\widetilde{N}}_{\ell ,\omega }}{4\pi ^2}\\&\quad =d\sum _{p\in \left[ \frac{d}{K}\right] _c}\sum _{q\in \left[ \frac{d}{L}\right] _c}\left( {\textbf{F}}_{\textbf{d}}\left( \widehat{\textbf{x}}\circ S_{q L-\ell }\overline{{{\widehat{x}}}^{}}\right) \right) _{\omega -pK}\left( {\textbf{F}}_{\textbf{d}}\left( {{\widehat{m}}}\circ S_{\ell -q L}\overline{{{\widehat{m}}}}\right) \right) _{\omega -pK}\\&\quad =\frac{1}{d}\sum _{p\in \left[ \frac{d}{K}\right] _c}\sum _{q\in \left[ \frac{d}{L}\right] _c}\mathbbm {e}^{-2\pi \mathbbm {i}(q L-\ell )(\omega -pK)/d}\left( {\textbf{F}}_{\textbf{d}}\left( \widehat{\textbf{x}}\circ S_{q L-\ell }\overline{{{\widehat{x}}}^{}}\right) \right) _{\omega -pK}\left( {\textbf{F}}_{\textbf{d}}\left( \textbf{m}\circ S_{\omega -pK}\overline{\textbf{m}}\right) \right) _{q L-\ell }\\&\quad =\frac{1}{d}\sum _{p\in \left[ \frac{d}{K}\right] _c}\sum _{q\in \left[ \frac{d}{L}\right] _c}\mathbbm {e}^{2\pi \mathbbm {i}(q L-\ell )(\omega -pK)/d}\left( {\textbf{F}}_{\textbf{d}}\left( \textbf{x}\circ S_{\omega -pK}\overline{\textbf{x}}\right) \right) _{\ell -q L}\left( {\textbf{F}}_{\textbf{d}}\left( {{\widehat{m}}}\circ S_{\ell -q L}\overline{{{\widehat{m}}}^{}}\right) \right) _{\omega -pK}\\&\quad =\frac{1}{d}\sum _{p\in \left[ \frac{d}{K}\right] _c}\sum _{q\in \left[ \frac{d}{L}\right] _c}\left( {\textbf{F}}_{\textbf{d}}\left( \textbf{x}\circ S_{\omega -pK}\overline{\textbf{x}}\right) \right) _{\ell -q L}\left( {\textbf{F}}_{\textbf{d}}\left( \textbf{m}\circ S_{\omega -pK}\overline{\textbf{m}}\right) \right) _{q L-\ell }. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwen, M., Perlmutter, M., Sissouno, N. et al. Phase Retrieval for \(L^2([-\pi ,\pi ])\) via the Provably Accurate and Noise Robust Numerical Inversion of Spectrogram Measurements. J Fourier Anal Appl 29, 8 (2023). https://doi.org/10.1007/s00041-022-09988-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-022-09988-6

Keywords

Navigation