Skip to main content
Log in

Abstract

The problem of phase retrieval arises in experimental uses of diffraction to determine intrinsic structure because the modulus of a Fourier transform is all that can usually be measured after diffraction occurs. For finite distributions, the phase retrieval problem can be solved by methods of factorization in suitable rings of polynomials; for continuous distributions with compact support, the methods of complex analysis are needed to solve the phase retrieval problem. These methods are discussed and examples are given for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.: Complex analysis. New York: McGraw-Hill 1966

    Google Scholar 

  2. Arsac, J.: Transformation de Fourier et théorie des distributions. Paris: Dunod 1961

    Google Scholar 

  3. Avrami, M.: A method of direct determination of crystal structure from X-ray data. Z. Kristallogr.100, 381–393 (1939)

    Google Scholar 

  4. Born, M., Wolf, L.: Principles of optics. Oxford: Pergamon Press 1970

    Google Scholar 

  5. Buerger, M.J.: Interpoint distances in cyclotomic sets. Can. Mineral.16, 301–314 (1978)

    Google Scholar 

  6. Buerger, M.J.: Exploration of cyclotomic point sets in tautoeikomic complementary pairs. Z. Kristallogr.145, 371–411 (1977)

    Google Scholar 

  7. Buerger, M.J.: Proofs and generalizations of Patterson's theorems on homometric complementary pairs. Z. Kristallogr.143, 79–98 (1976)

    Google Scholar 

  8. Buerger, M.J.: The algebra and geometry of convolutions. Atti. Acad. Noz. Jincei. Mem. Cl. Sci. Math. Nat. Sez.II (8, 683–695 (1962)

    Google Scholar 

  9. Buerger, M.J.: An algebraic representation of the images of sets of points. Atti. Acad. Sci. Torino Cl. Sci. Fis. Math. Nat.96, 175–192 (1961/1962)

    Google Scholar 

  10. Buerger, M.J.: Vector sets. Acta Crystallogr.3, 87–97 (1950)

    Google Scholar 

  11. Bullough, R.K.: On homometric sets. II. Sets obtained by singular transformations. Acta Crystallogr.17, 295–308 (1964)

    Google Scholar 

  12. Bullough, R.K.: On homometric sets. I. Some general theorems. Acta Crystallogr.14, 257–268 (1961)

    Google Scholar 

  13. Burge, R.E., Fiddy, M.A., Greenway, A.H., Ross, G.: The phase problem. Proc. R. Soc. London A350, 191–212 (1976)

    Google Scholar 

  14. Caelli, T.M.: On generating spatial configurations with identical interpoint distance distributions. Comb. Math. VII, Proc., New Castle, Australia. In: Lecture Notes in Mathematics, Vol. 829. Berlin, Heidelberg, New York: Springer 1979, pp. 69–75

    Google Scholar 

  15. Carpenter, G.: Principles of crystal structure determination. New York: Benjamin 1969

    Google Scholar 

  16. Cartwright, M.L.: The zeros of certain integral functions. Q. J. Math.1, 38–59 (1930)

    Google Scholar 

  17. Champeney, D.C.: Fourier transforms and their physical applications. London: Academic Press 1973

    Google Scholar 

  18. Chung Chieh: Analysis of cyclotomic sets. Z. Kristallogr.150, 261–277 (1979)

    Google Scholar 

  19. Cowley, J.: Diffraction physics. New York: North-Holland 1975

    Google Scholar 

  20. Fowle, E.N.: The design of FM pulse compression signals. IEEE Trans. IT-10, 61–67 (1964)

    Google Scholar 

  21. Harger, R.O.: Realization of ambiguity functions. TEEE Trans. SET-9, 127–130 (1963)

    Google Scholar 

  22. Hartman, P., Winter, A.: On the maxima of the Patterson functions. Phys. Rev.81, 271–273 (1951)

    Google Scholar 

  23. Hille, E.: Analytic function theory. Vols. I, II. New York: Chelsea 1973 and 1976

    Google Scholar 

  24. Hosemann, R., Bagchi, S.N.: On homometric sets. Acta Crystallogr.7, 237–241 (1954)

    Google Scholar 

  25. Hosemann, R., Bagchi, S.N.: Direct analysis of diffraction by matter. New York: North-Holland 1962

    Google Scholar 

  26. Kline, M., Kay, I.: Electromagnetic theory and geometrical optics. New York: Wiley 1965

    Google Scholar 

  27. Ladd, M.F.C., Palmer, R.A.: Structure determination by X-ray crystallography. New York: Plenum Press 1977

    Google Scholar 

  28. Lipson, H., Cochran, W.: The determination of crystal structures. Ithaca: Cornell University Press 1966

    Google Scholar 

  29. McLachlan, D.: X-ray crystal structure. New York: McGraw-Hill 1957

    Google Scholar 

  30. Morgan, S.P.: On the mathematical question of phase reconstruction, Misc. 10, Restoration of atmospherically degraded images, Vol. 3, Woods Hole Summer Study, Nat. Acad. Sci. and NRC, pp. 53–60 (1966)

  31. O'Neill, E.L., Walther, A.: The question of phase in image formation. Optica Acta10, 33–40 (1962)

    Google Scholar 

  32. Paley, R.E.A.C., Wiener, N.: Fourier transforms in the complex domain. AMS Colloquim Publ. Vol. 19. New York, 1934

  33. Patterson, A.L.: Ambiguities in the X-ray analysis of crystal structure. Phys. Rev.65, 195–201 (1944)

    Google Scholar 

  34. Patterson, A.L.: Homometric structures. Nature143, 939–940 (1939)

    Google Scholar 

  35. Patterson, A.L.: A direct method for the determination of the components of interatomic distances in crystals. Z. Kristallogr.90, 517–542 (1935)

    Google Scholar 

  36. Pauling, L., Shappell, M.D.: The crystal structure of bixbyite and theC-modification of the sesquioxides. Z. Kristallogr.75, 128–142 (1930)

    Google Scholar 

  37. Rau, V.G. et al.: On the calculation of possible Patterson cyclotomic sets. Proc. Acad. Sci. USSR225, 1110–1113 (1980)

    Google Scholar 

  38. Readhead, A.C.S., Wilkinson, R.N.: The mapping of compact radio sources from VLBI data, Astrophys. J.223, 25–36 (1978)

    Google Scholar 

  39. Rosenblatt, J., Seymour, P.: The structure of homometric sets, SIAM J. Alg. Disc. Meth.3, 343–350 (1982)

    Google Scholar 

  40. Rossi, P., McMurdy, C.W., McCreery, R.L.: Diffractive spectroelectrochemistry; use of diffracted light for monitoring electrogenerated chromophores. J. Am. Chem. Soc.103, 2524–2529 (1981)

    Google Scholar 

  41. Rothbauer, R.: On the separation of the unknown parameters of the problem of crystal-structure analysis. Acta. Crystallogr. A36, 27–32 (1980)

    Google Scholar 

  42. Schwartz, L.: Théorie des distributions. Paris: Hermann 1966

    Google Scholar 

  43. Silver, S.: Microwave antenna theory and design. MIT Rad. Lab. Series, Vol. 12, pp. 279–282. New York: McGraw-Hill 1949

    Google Scholar 

  44. Stout, G., Jensen, L.: X-ray structure determination. London: MacMillan 1968

    Google Scholar 

  45. Titchmarsh, E.C.: The zeros of certain integral functions. Proc. London Math. Soc. (2)25, 283–307 (1926)

    Google Scholar 

  46. Toraldo Di Francia, G.: Resolving power and information. J. Opt. Soc. Am.45, 497–501 (1955)

    Google Scholar 

  47. Walther, A.: The question of phase retrieval in optics. Optica Acta10, 41–49 (1963)

    Google Scholar 

  48. Wiener, N.: Generalized harmonic analysis. Acta Math.55, 117–258 (1930)

    Google Scholar 

  49. International tables for X-ray crystallography. Vol.I. Birmingham, England: The Kunech Press 1965

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Partially supported by NSF Grant MCS 8218800

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenblatt, J. Phase retrieval. Commun.Math. Phys. 95, 317–343 (1984). https://doi.org/10.1007/BF01212402

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212402

Keywords

Navigation