Skip to main content
Log in

\(L^p\)-Multipliers Sensitive to the Group Structure on Nilpotent Lie Groups

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We propose new sufficient conditions for \(L^p\)-multipliers on homogeneous nilpotent groups. The multipliers generalise the flag multipliers of Nagel–Ricci–Stein–Wainger, but the approach and the techniques applied are entirely different. Our multipliers are better adapted to the specific commutation rules on the Lie algebra of the given group. The proofs are based on a new symbolic calculus fashioned after Hörmander. We also take advantage of the Cotlar–Stein lemma, and the Littlewood–Paley theory in the spirit of Duoandikoetxea–Rubio de Francia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chevalley, C.: Theory of Distributions. Columbia University, Columbia (1950/1951)

  2. Christ, M.: The strong maximal function on a nilpotent group. Trans. Am. Math. Soc. 331, 1–13 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Corwin, L., Greenleaf, F.P.: Representations of Nilpotent Lie Groups and Their Applications. Basic Theory and Examples. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  4. Duoandikoetxea, J., de Francia, R.: Maximal and singular integral operators via Fourier transform estimates. Inv. Math. 84, 541–561 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dziubański, J.: Schwartz spaces associted with some non-differential convolution operators on homogeneous groups. Colloq. Math. 63, 153–157 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dziubański, J.: A note on Schrödinger operators with polynomial potentials. Colloq. Math. 78, 149–161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Głowacki, P.: The Melin calculus for general homogeneous groups. Ark. Mat. 45, 31–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Głowacki, P.: \(L^p\)-boundedness of flag kernels on homogeneous groups via symbolic calculus. J. Lie Theory 23, 953–977 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Hörmander, L.: The Weyl calculus of pseudodifferential operators. Commun. Pure Appl. Math. 32, 359–443 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Manchon, D.: Formule de Weyl pour les groupes de Lie nilpotents. J. Reine Angew. Math. 418, 77–129 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Melin, A.: Parametrix constructions for right-invariant differential operators on nilpotent Lie groups. Ann. Glob. Anal. Geom. 1, 79–130 (1983)

    Article  MATH  Google Scholar 

  12. Nagel, A., Ricci, F., Stein, E.M.: Singular integrals with flag kernels and analysis on quadratic CR manifolds. J. Funct. Anal. 181, 29–118 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nagel, A., Ricci, F., Stein, E.M., Wainger, S.: Singular integrals with flag kernels on homogeneous groups I. Rev. Mat. Iberoam. 28, 631–722 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Narasimhan, R.: Analysis on Real and Complex Manifolds, Masson & CIE, Editeur-Paris. North-Holland Publishing Company, Amsterdam (1968)

    Google Scholar 

  15. Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton, NJ (1993)

    Google Scholar 

Download references

Acknowledgements

I wish to thank L. Newelski, M. Pascu, and E. M. Stein for their advice on the subject of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Głowacki.

Additional information

Communicated by Hans G. Feichtinger.

Appendix: Convolution of Distributions

Appendix: Convolution of Distributions

Let X be an N-dimensional vector space as described in Sect. 2.

10.1

(Sobolev inequality) We have

$$\begin{aligned} \Vert f\Vert _{A(X)}\lesssim \max _{|\alpha |\le {N/2+1}} \Vert D^{\alpha }f\Vert _{L^2(X)}, \quad f\in \mathcal {S}(X), \end{aligned}$$

where \( \Vert f\Vert _{A(X)}=\int _{\mathfrak {g}^{\star }}|\widehat{f}(\xi )|d\xi \). (Proposition 3.5.14 of Narasimhan [14].)

The following is a direct consequence of (10.1).

10.2

Let F be a measurable function on an open subset of X. If, for every \(\alpha \in \mathcal {A}_{\varvec{N}}\), \(D^{\alpha }F\) is a locally bounded function, then F is smooth.

Let \(\mathfrak {g}\) be a nilpotent Lie group as described in Sect. 5. The following definition of the general convolution is due to Chevalley. See Chevalley [1], Sect. 8.

Definition 10.3

We say that distributions \(S,T\in \mathcal {S}'(\mathfrak {g})\) are convolvable if

$$\begin{aligned} \int _{\mathfrak {g}}\left| \Big (\widetilde{S}\star f\Big )(x)\Big (T\star \widetilde{g}\Big )(x)\right| dx<\infty , \quad f,g\in \mathcal {S}(\mathfrak {g}). \end{aligned}$$

Proposition 10.4

If S,T are convolvable, then there exists a unique distribution \(S\star T\) such that

$$\begin{aligned} \langle S\star T,f\star g\rangle =\int _{\mathfrak {g}}\Big (\widetilde{S}\star f\Big )(x)\Big (T\star \widetilde{g}\Big )(x)dx. \quad f,g\in \mathcal {S}(\mathfrak {g}). \end{aligned}$$
(10.5)

10.6

If \(S,T\in \mathcal {S}'(\mathfrak {g})\) are convolvable, then

$$\begin{aligned} (S\star T)\star \varphi =S\star (T\star \varphi ), \quad \varphi \star (S\star T)=(\varphi \star S)\star T, \end{aligned}$$
(10.7)

for \(\varphi \in \mathcal {S}(\mathfrak {g})\). Moreover, \(\widetilde{T}\) and \(\widetilde{S}\) are also convolvable and

$$\begin{aligned} (S\star T)^{\sim }=\widetilde{T}\star \widetilde{S}. \end{aligned}$$

10.8

A distribution \(R\in \mathcal {S}'(\mathfrak {g})\) is said to be an \(\mathcal {S}\)-convolver if \(R\star f,f\star R\in \mathcal {S}(\mathfrak {g})\), for every \(f\in \mathcal {S}(\mathfrak {g})\).

10.9

If \(K\in \mathcal {S}'(\mathfrak {g})\) and R is an \(\mathcal {S}\)-convolver, then K,R and R,K are convolvable and

$$\begin{aligned} \langle K\star R,f\rangle =\langle K,f\star \widetilde{R}\rangle , \quad \langle R\star K,f\rangle =\langle K,\widetilde{R}\star f\rangle , \quad f\in \mathcal {S}(\mathfrak {g}). \end{aligned}$$

10.10

A distribution \(R\in \mathcal {S}'(\mathfrak {g})\) is central if \(R\star f=f\star R\), for every \(f\in \mathcal {S}(\mathfrak {g})\). If R is a central \(\mathcal {S}\)-convolver, then \(R\star K=K\star R\), for every \(K\in \mathcal {S}'(\mathfrak {g})\).

10.11

If S and T are convolvable and R is an \(\mathcal {S}\)-convolver, then S, \(T\star R\) and \(R\star S\), T are convolvable, and

$$\begin{aligned} (S\star T)\star R=S\star (T\star R), \quad R\star (S\star T)=(R\star S)\star T. \end{aligned}$$

If, moreover, R is central, then

$$\begin{aligned} (S\star R)\star T=S\star (R\star T). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Głowacki, P. \(L^p\)-Multipliers Sensitive to the Group Structure on Nilpotent Lie Groups. J Fourier Anal Appl 25, 1632–1672 (2019). https://doi.org/10.1007/s00041-018-9640-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-9640-4

Keywords

Mathematics Subject Classification

Navigation