Skip to main content
Log in

Hilbert–Poincaré series for spaces of commuting elements in Lie groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this article we study the homology of spaces \(\mathrm{Hom}({\mathbb Z}^n,G)\) of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to \(\mathrm{Hom}(F_n/\Gamma _n^m,G)\), where the subgroups \(\Gamma _n^m\) are the terms in the descending central series of the free group \(F_n\). Finally, we show that there is a stable equivalence between the space \(\mathrm{Comm}(G)\) studied by Cohen–Stafa and its nilpotent analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Some authors (e.g. Grove and Benson [17, Chapter 7], or Humphreys [19, Chapter 3]) replace V by its dual \(V^*\) in this discussion.

References

  1. Adem, A., Bahri, A., Bendersky, M., Cohen, F.R., Gitler, S.: On decomposing suspensions of simplicial spaces. Bol. Soc. Mat. Mexicana (3) 15(1), 91–102 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Adem, A., Cohen, F.R.: Commuting elements and spaces of homomorphisms. Math. Ann. 338(3), 587–626 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adem, Alejandro, Gómez, José Manuel: Equivariant \(K\)-theory of compact Lie group actions with maximal rank isotropy. J. Topol. 5(2), 431–457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baird, T.: Cohomology of the space of commuting \(n\)-tuples in a compact Lie group. Algebr. Geom. Topol. 7, 737–754 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baird, T., Jeffrey, L.C., Selick, P.: The space of commuting \(n\)-tuples in SU\((2)\). Illinois J. Math. 55(3), 805–813 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergeron, M.: The topology of nilpotent representations in reductive groups and their maximal compact subgroups. Geom. Topol. 19, 1383–1407 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bergeron, M., Silberman, L.: A note on nilpotent representations. J. Group Theory 19(1), 125–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de Lie compacts. Ann. Math. 57(1), 115–207 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borel, A, Friedman, R., Morgan, J.: Almost Commuting Elements in Compact Lie Groups. Number 747 in Mem. Amer. Math. Soc. AMS (2002)

  10. Bott, R., Samelson, H.: On the Pontryagin product in spaces of paths. Comment. Math. Helv. 27(1), 320–337 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  11. Broué, M.: Introduction to complex reflection groups and their braid groups, volume 1988 of Lecture Notes in Mathematics, Springer, Berlin (2010)

  12. Brown, Ronald: Topology and groupoids. BookSurge LLC, Charleston (2006)

    MATH  Google Scholar 

  13. Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77(4), 778–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, F. R., Stafa, M.: A survey on spaces of homomorphisms to Lie groups. In: Configurations Spaces: Geometry, Topology and Representation Theory, volume 14 of Springer INdAM series, Springer, pp. 361–379 (2016)

  15. Cohen, F.R., Stafa, M.: On spaces of commuting elements in Lie groups. Math. Proc. Camb. Philos. Soc. 161(3), 381–407 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gómez, J., Pettet, A., Souto, J.: On the fundamental group of \({\rm Hom}({\mathbb{Z}}^k, G)\). Math. Z. 271(1–2), 33–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grove, L.C., Benson, C.T.: Finite reflection groups, volume 99 of Graduate Texts in Mathematics, second edition. Springer, New York (1985)

  18. Halperin, S.: Rational homotopy and torus actions, pages 293–306. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1985)

  19. Humphreys, J.E.: Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29. Reprint edition. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  20. Kac, V., Smilga, A.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. The many faces of the superworld, pp. 185–234 (2000)

  21. Molien, Th: Ueber die Invarianten der linearen Substitutionsgruppen. Berl. Ber. 1152–1156, 1897 (1897)

    MATH  Google Scholar 

  22. Pettet, A., Souto, J.: Commuting tuples in reductive groups and their maximal compact subgroups. Geom. Topol. 17(5), 2513–2593 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reeder, M.: On the cohomology of compact Lie groups. Enseign. Math. 41, 181–200 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Richardson, R.W.: Commuting varieties of semisimple Lie algebras and algebraic groups. Compositio Math. 38(3), 311–327 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math 6(2), 274–301 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sjerve, D., Torres-Giese, E.: Fundamental groups of commuting elements in Lie groups. Bull. Lond. Math. Soc. 40(1), 65–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Springer, T.A.: Regular elements of finite reflection groups. Invent. Math. 25(2), 159–198 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stafa, M.: On polyhedral products and spaces of commuting elements in lie groups. PhD thesis, University of Rochester (2013)

  29. Stafa, M.: Poincaré series of character varieties for nilpotent groups. arXiv preprint arXiv:1705.01443 (2017)

  30. Villarreal, B.: Cosimplicial groups and spaces of homomorphisms. Algebra Geom. Topol. 17(6), 3519–3545 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Witten, E.: Constraints on supersymmetry breaking. Nuclear Phys. B 202, 253–316 (1982)

    Article  MathSciNet  Google Scholar 

  32. Witten, E.: Toroidal compactification without vector structure. J. High Energy Phys., (2):Paper 6, 43 (1998)

Download references

Acknowledgements

We thank Alejandro Adem and Fred Cohen for helpful comments, and Mark Ramras for pointing out the Binomial Theorem, which simplified our formulas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Ramras.

Additional information

D. Ramras was partially supported by a Simons Collaboration grant (#279007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramras, D.A., Stafa, M. Hilbert–Poincaré series for spaces of commuting elements in Lie groups. Math. Z. 292, 591–610 (2019). https://doi.org/10.1007/s00209-018-2122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2122-1

Keywords

Mathematics Subject Classification

Navigation