Skip to main content
Log in

An Analogue of Slepian Vectors on Boolean Hypercubes

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Analogues of Slepian vectors are defined for finite-dimensional Boolean hypercubes. These vectors are the most concentrated in neighborhoods of the origin among bandlimited vectors. Spaces of bandlimited vectors are defined as spans of eigenvectors of the Laplacian of the hypercube graph with lowest eigenvalues. A difference operator that almost commutes with space and band limiting is used to initialize computation of the Slepian vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bojarski, M., Choromanska, A., Choromanski, K., Fagan, F., Gouy-Pailler, C., Morvan, A., Sakr, N., Sarlos, T., Atif, J.: Structured adaptive and random spinners for fast machine learningcomputations. In: AISTATS 2017. AISTATS 2017, JMLR: Workshop and Conference Proceedings, (2017)

  2. Boyd, J.P.: Algorithm 840: computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions–prolate elements. ACM Trans. Math. Softw. 31, 149–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grünbaum, F.A.: Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions. SIAM J. Algeb. Discr. 2(2), 136–141 (1981)

    Article  MathSciNet  Google Scholar 

  4. Grünbaum, F.A., Yakimov, M.: The prolate spheroidal phenomenon as a consequence of bispectrality. Superintegrability in Classical and Quantum Systems, pp. 301–312. American Mathematical Society, Providence, RI (2004)

    Chapter  Google Scholar 

  5. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting. Prolate Functions, Sampling, and Applications. Birkhäuser, Boston, MA (2012)

    Book  MATH  Google Scholar 

  6. Hogan, J.A., Lakey, J.D.: Novel Methods in Harmonic Analysis, Frame Properties of Shifts of Prolate and Bandpass Prolate Functions, pp. 215–235. Springer International Publishing, Boston (2017)

    Google Scholar 

  7. Landau, H.J.: On the density of phase-space expansions. IEEE Trans. Inform. Theory 39, 1152–1156 (1993)

    Article  MATH  Google Scholar 

  8. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell Syst. Tech. J. 40, 65–84 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  9. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41, 1295–1336 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Osipov, A., Rokhlin, V., Xiao, H.: Prolate Spheroidal Wave Functions or Order Zero: Mathematical Tools for Bandlimited Approximation. Springer, New York (2013)

    Book  MATH  Google Scholar 

  12. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3057 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Walter, G.G.: Differential operators which commute with characteristic functions with applications to a lucky accident. Complex Var. Theory Appl. 18, 7–12 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Wieczorek, M.A., Simons, F.J.: Localized spectral analysis on the sphere. Geophys. J. Int. 162, 655–675 (2005)

    Article  Google Scholar 

  16. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. 17, 805–838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, W.Y., Chamzas, C.: On the periodic discrete prolate spheroidal sequences. SIAM J. Appl. Math. 44, 1210–1217 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, Z., Karnik, S., Davenport, M.A., Romberg, J., Wakin, M.B.: The eigenvalue distribution of discrete periodic time-frequency limiting operators. IEEE Signal Process. Lett. 25(1), 95–99 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The second author would like to thank Robert Smits for pointing out Lemma 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Lakey.

Additional information

Communicated by Hans G. Feichtinger.

Appendix: Expressions for Entries of the Matrix HTLTH

Appendix: Expressions for Entries of the Matrix HTLTH

The purpose of this appendix is to derive explicit formulas for the entries of the matrix HTLTH that arises in the commutator \([\mathrm{BDO},\, {\bar{H}}[TLT,{\bar{H}}]]\). Besides providing a means to compute the commutator for large values of N, the formulas can be used as a basis for commutator estimates in terms of (NK).

Of interest are the entries of \({\bar{H}}[TLT,\, {\bar{H}}]={\bar{H}} TLT{\bar{H}}-TLT\). As TLT is relatively uncomplicated, we focus on the entries of \(H TLTH=2^N{\bar{H}} TLT{\bar{H}}\). As before since \((TLT)_{RP} =0\) unless \(P=R\) or \(P\sim R\), writing \(|R|=r\),

$$\begin{aligned} (TLT H)_{RS}= & {} \sum _P (TLT)_{RP} H_{PS} =(TLT)_{RR} H_{RS} +\sum _{P\sim R} (TLT)_{RP} H_{PS}\\= & {} 2Nr H_{RS}-2\sqrt{r(r+1)}\sum _{P\sim R,\,p=r+1} H_{PS} -2\sqrt{r(r-1)}\sum _{P\sim R,\, p=r-1} H_{PS}\, . \end{aligned}$$

As before, if P is an addition neighbor of R whose extension element is in S or if P is a subtraction neighbor of R whose subtraction element is in S then \(H_{PS}=-H_{RS}\); otherwise \(H_{PS}=H_{RS}\). This gives us the following.

Lemma 4

Write \(r=|R|\) and \(s=|S|\). One has

$$\begin{aligned} (TLT H)_{RS}&=\left( 2Nr -2\sqrt{r(r+1)}\left[ |S^c\cap R^c|-|S\cap R^c|\right] \right. \nonumber \\&\quad \left. -2\sqrt{r(r-1)}\left[ |S^c\cap R|-|S\cap R|\right] \right) H_{RS}\, . \end{aligned}$$
(3)

Equivalently, the coefficient of \(H_{RS}\) in \((TLT H)_{RS}\) is

$$\begin{aligned} c_{RS}&=2N(r-\sqrt{r(r+1)})+4s\sqrt{r(r+1)} \nonumber \\&\quad +(2r-4|R\cap S|)(\sqrt{r(r+1)}-\sqrt{r(r-1)}) \end{aligned}$$
(4)

Equation (4) follows from (3) by observing that \(|S^c\cap R^c|=N-s-r+|S\cap R|\), \(|S\cap R^c|=s-|S\cap R|\), etcetera. If one lets

$$\begin{aligned} c''_{RS}= -4|R\cap S|(\sqrt{r(r+1)}-\sqrt{r(r-1)}) \end{aligned}$$

and \(c_{RS}'=c_{RS}-c''_{RS}\), then

$$\begin{aligned} c'_{RS}=2N(r-\sqrt{r(r+1)})+4s\sqrt{r(r+1)} +2r(\sqrt{r(r+1)}-\sqrt{r(r-1)})\, \end{aligned}$$
(5)

depends only on \(r=|R|\) and \(s=|S|\). Observing that \(H_{RP}H_{PS}=H_{S\Delta R,P}\), one has

$$\begin{aligned} (HTLTH)_{RS}= \sum _{P} H_{S\Delta R,P} c_{PS} = \sum _{P} H_{S\Delta R,P} (c'_{PS}+c''_{PS}) \end{aligned}$$

where P runs over all subsets of \(\{1,\dots , N\}\).

Now write

$$\begin{aligned} HTLTH=C'+C''; \quad C'_{RS}= \sum _{P} c'_{PS} H_{S\Delta R,P} ,\quad C''_{RS}= \sum _{P} c''_{PS} H_{S\Delta R,P} \end{aligned}$$
(6)

Lemma 5

The entries of the matrix \(C'\) can be written

$$\begin{aligned} C'_{RS}=\sum _{p=0}^{N-|S\Delta R|} c'_{ps}\, \left( {\begin{array}{c}N-|S\Delta R|\\ p\end{array}}\right) \,\, { }_2F_1 (-|S\Delta R|,-p, N-|S\Delta R|-p+1;-1) \end{aligned}$$

where \({}_2 F_1(a,b;c;z)\) denotes the Gaussian hypergeometric function.

Proof

For a fixed \(p\in \{0,1,\dots , S\Delta R\}\),

$$\begin{aligned} \sum _{|P|=p} H_{S\Delta R,P}=\sum _{k=0}^{\min (p,|S\Delta R|)} (-1)^k \left( {\begin{array}{c}|S\Delta R|\\ k\end{array}}\right) \left( {\begin{array}{c}N-|S\Delta R|\\ p-k\end{array}}\right) \end{aligned}$$

which follows by counting the number of ways that a p-element set can be divided into a subset of \(S\Delta R\) and a subset of the complement of \(S\Delta R\), and observing that \(H_{S\Delta R,P}=(-1)^k\) if P has k elements in common with \(S\Delta R\). The lemma then follows upon taking \(n=|S\Delta R|\), \(m=N-|S\Delta R|\) and \(z=-1\) in the identity (7) in Lemma 6 below. \(\square \)

Lemma 6

Define the Gaussian hypergeometric function

$$\begin{aligned} {}_2F_1(a,b;c;z)=\sum _{k=0}^\infty \frac{(a)_k(b)_k}{(c)_k} \frac{z^k}{k!};\quad (a)_k=\frac{\Gamma (a+k)}{\Gamma (a)} \end{aligned}$$

For nonnegative integers mnp such that \(p\le n\) one has

$$\begin{aligned} \sum _{k=0}^{\min (n,p)} \left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}m\\ p-k\end{array}}\right) \, z^k =\left( {\begin{array}{c}m\\ p\end{array}}\right) {}_2F_1(-n,-p,m-p+1;z)\, . \end{aligned}$$
(7)

Proof

If n is a positive integer and \(0\le k\le n\) then

$$\begin{aligned} (-n)_k= & {} (-n)(1-n)\cdots (-n+k-1)\\= & {} (-1)^k n (n-1) (n-k+1)=(-1)^k \frac{n!}{(n-k)!} \end{aligned}$$

and \((-n)_k=0\) if \(k>n\). Thus, if n and p are nonnegative integers then

$$\begin{aligned} {}_2F_1(-n,-p;c;z)=\sum _{k=0}^{\min (n,p)} \frac{n!}{(n-k)!} \frac{p!}{(p-k)!}\frac{1}{(c)_k} \frac{z^k}{k!}\, . \end{aligned}$$

\(\square \)

In particular, if \(c=m-p+1\) where \(p\le m\) then \((m-p+1)_k=\frac{(m-p+k)!}{(m-p)!}\) and

$$\begin{aligned} {}_2F_1(-n,-p;m+1-p;z)= & {} \sum _{k=0}^{\min (n,p)} \frac{n!}{(n-k)!} \frac{p!}{(p-k)!}\frac{(m-p)!}{(m-(p-k))!} \frac{z^k}{k!} \\= & {} \sum _{k=0}^{\min (n,p)} \frac{n!}{k!(n-k)!} \frac{p! (m-p)!}{m!}\frac{m!}{(p-k)!(m-(p-k))!} \, z^k \\= & {} \left( {\begin{array}{c}m\\ p\end{array}}\right) ^{-1} \sum _{k=0}^{\min (n,p)} \left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}m\\ p-k\end{array}}\right) z^k\, \, . \end{aligned}$$

This proves the lemma.

Lemma 7

Let \(c''_{RS}= |R\cap S| d''_{r}\) where \(d''_{r}=-4\sqrt{r(r+1)}-\sqrt{r(r-1)})\). The entries of the matrix \(C''\) in (6) can then be written

$$\begin{aligned} C''_{RS}= & {} \sum _P H_{R\Delta S, P} \, c''_{PS}= \sum _{p=0}^N d_p''\sum _{k=0}^{\min (p,s)} k\, (-1)^k \left( {\begin{array}{c}s-q\\ k\end{array}}\right) ^{-1}\left( {\begin{array}{c}N-s-(r-k)\\ p-k\end{array}}\right) ^{-1} \\&\quad \times \,{}_2F_{1} (-q,-k;s-q+1-k;-1) {}_2F_{1} (q-r,k-p; N-s-(r-q)\\&\quad +1-(p-k);-1) \end{aligned}$$

where \((p,r,s)=(|P|,|R|,|S|)\), \(|P\cap S|=k\), and \(|R\cap S|=q\).

The argument to prove Lemma 7 is similar to that of Lemma 5 but now one must take into account the distribution of values \(k=|P\cap S|\), counting the number of ways to decompose P, \(|P|=p\) according to its part that intersects R inside of S (or not) and its part that intersects R outside of S (or not), and recalling that \(q=|S\cap R|\) is fixed.

Up to this point we have derived formulas for entries of HTLTH in terms of binomial coefficients, values of hypergeometric functions, and coefficients involving factors \(\sqrt{p(p\pm 1)}\). The latter can be estimated in terms of Laurent series, in particular

$$\begin{aligned} \pm \sqrt{x(x\pm 1)} \mp x-\frac{1}{2} =\mp \frac{1}{8x}+\frac{1}{16x^2}\mp \frac{5}{128 x^3}+\frac{7}{256 x^4}+O\bigl (\frac{1}{x^5}\bigr ),\quad x\rightarrow \infty \, . \end{aligned}$$

For example, the coefficient \(c'_{RS}\) in (5) behaves as

$$\begin{aligned} 2N\Bigl (-\frac{1}{2} +\frac{1}{8r}\Bigr )+4s\Bigl (r+\frac{1}{2}-\frac{1}{8r}\Bigl )+2r +O\Bigl (\frac{1}{r^2}\Bigr ) \end{aligned}$$

for large r, while \(c''_{RS}= -4|R\cap S|(\sqrt{r(r+1)}-\sqrt{r(r-1)})\) behaves as

$$\begin{aligned} -4|R\cap S| \Bigl ( 1+O\Bigl (\frac{1}{r^2}\Bigr )\Bigr )\, . \end{aligned}$$

Therefore, in the expansion

$$\begin{aligned} (HTLTH)_{RS}=\sum _P (c'_{PS}+c''_{PS}) H_{R\Delta S,P} \end{aligned}$$

each of the coefficients \(c_{PS}=c'_{PS}+c''_{PS}\) is essentially bounded by the maximum of N and the product ps. The nonzero entries of the commutator [QHTLTH] correspond to values \((HTLTH)_{RS}\) such that \(|R|\le K\) and \(|S|>K\) or \(|S|\le K\) and \(|R|>K\). As previously indicated, norm bounds for \([Q,\, \mathrm{BDO}]\) based on these approximations of \(C'\) and \(C''\) will appear in future work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogan, J.A., Lakey, J.D. An Analogue of Slepian Vectors on Boolean Hypercubes. J Fourier Anal Appl 25, 2004–2020 (2019). https://doi.org/10.1007/s00041-018-09654-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-09654-w

Keywords

Mathematics Subject Classification

Navigation