Skip to main content
Log in

On the Structure of Boolean Functions with Small Spectral Norm

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

In this paper we prove results regarding Boolean functions with small spectral norm (the spectral norm of f is \({\|\hat{f}\|_1 = \sum_{\alpha}|\hat{f}(\alpha)|}\)). Specifically, we prove the following results for functions \({f : \{0, 1\}^n \to \{0, 1\}}\) with \({\|\hat{f}\|_1 = A}\).

  1. 1.

    There is an affine subspace V of co-dimension at most A 2 such that \({f|_V}\) is constant.

  2. 2.

    f can be computed by a parity decision tree of size at most \({2^{A^2} n^{2A}}\). (A parity decision tree is a decision tree whose nodes are labeled with arbitrary linear functions.)

  3. 3.

    f can be computed by a De Morgan formula of size \({O(2^{A^2} n^{2A + 2})}\) and by a De Morgan formula of depth \({O(A^2 + \log(n) \cdot A)}\).

  4. 4.

    If in addition f has at most s nonzero Fourier coefficients, then f can be computed by a parity decision tree of depth at most \({A^2 \log s}\).

  5. 5.

    For every \({\epsilon > 0}\) there is a parity decision tree of depth \({O(A^2 + \log(1/\epsilon))}\) and size \({2^{O(A^2)} \cdot \min \{1/\epsilon^2, \log(1/\epsilon)^{2A}\}}\) that \({\epsilon}\)-approximates f. Furthermore, this tree can be learned (in the uniform distribution model), with probability \({1 - \delta}\), using \({{\tt poly}(n, {\rm exp}(A^2), 1/\epsilon, \log(1/\delta))}\) membership queries.

All the results above (except 3) also hold (with a slight change in parameters) for functions \({f : \mathbb{Z}_p^n \to \{0, 1\}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekhnovich M., Braverman M., Feldman V., Klivans A.R., Pitassi T. (2008) The complexity of properly learning simple concept classes. J. Comput. Syst. Sci. 74(1): 16–34

    Article  MathSciNet  MATH  Google Scholar 

  • M. Bellare (1992). A Technique for Upper Bounding the Spectral Norm with Applications to Learning. In Proceedings of the 5th Annual COLT, 62–70.

  • Bellare M., Coppersmith D., Håstad J., Kiwi M.A., Sudan M. (1996) Linearity testing in characteristic two. IEEE Trans. Inf. Theory. 42(6): 1781–1795

    Article  MathSciNet  MATH  Google Scholar 

  • Blum M., Luby M., Rubinfeld R. (1993) Self-testing/correcting with applications to numerical problems. J. Comput. Syst. Sci. 47(3): 549–595

    Article  MathSciNet  MATH  Google Scholar 

  • Buhrman H., de Wolf R. (2002) Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1): 21–43

    Article  MathSciNet  MATH  Google Scholar 

  • Friedgut E. (1998) Boolean functions with low average sensitivity depend on few coordinates. Combinatorica 18(1): 27–35

    Article  MathSciNet  MATH  Google Scholar 

  • O. Goldreich & L. A. Levin (1989). A hardcore predicate for all one-way functions. In Proceedings of the 21st STOC, 25–32.

  • Gopalan P., O’Donnell R., Servedio R., Shpilka A., Wimmer K. (2011) Testing Fourier dimensionality and sparsity. SIAM J. Comput. 40(4): 1075–1100

    Article  MathSciNet  MATH  Google Scholar 

  • Green B., Sanders T. (2008a) Boolean functions with small spectral norm. GAFA 18: 144–162

    MathSciNet  MATH  Google Scholar 

  • Green B., Sanders T. (2008b) A quantitative version of the idempotent theorem in harmonic analysis. Annals of Math. 168(3): 1025–1054

    Article  MathSciNet  MATH  Google Scholar 

  • Grolmusz V. (1997) On the power of circuits with gates of low L 1 norms. Theor. Comput. Sci. 188(1): 117–128

    Article  MathSciNet  MATH  Google Scholar 

  • Håstad J. (2001) Some optimal inapproximability results. J. ACM 48(4): 798–859

    Article  MathSciNet  MATH  Google Scholar 

  • J. Kahn, G. Kalai & N. Linial (1988). The influence of variables on Boolean functions. In Proceedings of the 29th annual FOCS, 68–80.

  • Kalai G. (2002) A Fourier-theoretic perspective on the Condorcet paradox and Arrow’s theorem. Adv. Appl. Math. 29(3): 412–426

    Article  MathSciNet  MATH  Google Scholar 

  • Kushilevitz E., Mansour Y. (1993) Learning Decision Trees Using the Fourier Spectrum. SIAM J. Comput. 22(6): 1331–1348

    Article  MathSciNet  MATH  Google Scholar 

  • Linial N., Mansour Y., Nisan N. (1993) Constant Depth Circuits, Fourier Transform and Learnability. J. ACM 40(3): 607–620

    Article  MathSciNet  MATH  Google Scholar 

  • S. Lovett (2014). Communication is bounded by root of rank. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC).

  • Y. Mansour (1994). Learning Boolean functions via the Fourier transform. In Theoretical advances in neural computation and learning, 391–424.

  • A. Montanaro & T. Osborne (2009). On the communication complexity of XOR functions. CoRR abs/0909.3392.

  • R. O’Donnell (2014). Analysis of boolean functions. Cambridge University Press.

  • A. Shpilka, A. Tal & B. L. Volk (2014). On the structure of boolean functions with small spectral norm. In Innovations in Theoretical Computer Science, ITCS’14, 37–48.

  • P. M. Spira (1971). On time-hardware complexity tradeoffs for Boolean functions. In Proceedings of the 4th HICSS, 525–527.

  • H. Y. Tsang, C. H. Wong, N. Xie & S. Zhang (2013). Fourier sparsity, spectral norm, and the Log-rank conjecture. In Proceedings of the 54th Annual FOCS, 658–667.

  • S. V. Yablonskii (1954). Realization of the linear function in the class of \({\Pi}\)-schemes. In Dokl. Akad. Nauk SSSR, volume 94, 805–806. In Russian.

  • Z. Zhang & Y. Shi (2010). On the parity complexity measures of Boolean functions. Theor. Comput. Sci. 411(26-28), 2612 – 2618. ISSN 0304-3975.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shpilka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpilka, A., Tal, A. & Volk, B.l. On the Structure of Boolean Functions with Small Spectral Norm. comput. complex. 26, 229–273 (2017). https://doi.org/10.1007/s00037-015-0110-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-015-0110-y

Keywords

Subject classification

Navigation