Skip to main content
Log in

On the Interplay of Regularity and Decay in Case of Radial Functions II. Homogeneous Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We deal with decay and boundedness properties of elements of radial subspaces of homogeneous Besov and Triebel-Lizorkin spaces. For the region of parameters which are of interest for us these homogeneous spaces are larger than the inhomogeneous counterparts. By switching from the inhomogeneous spaces to the homogeneous classes the properties of the radial elements change. Our investigations are based on the atomic decompositions for radial subspaces in the sense of Epperson and Frazier (J. Fourier Anal Appl. 1:311–353, 1995). Finally, we apply these results for deriving some assertions on compact embeddings on unbounded domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, New York (2003)

    Google Scholar 

  2. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  3. Bourdaud, G.: Realisations des espaces de Besov homogenes. Ark. Mat. 26, 41–54 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourdaud, G.: A sharpness result for powers of Besov functions. J. Funct. Spaces Appl. 2, 267–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourdaud, G., Moussai, M., Sickel, W.: Composition operators on Lizorkin-Triebel spaces. J. Funct. Anal. 259, 1098–1128 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cho, Y., Ozawa, T.: Sobolev inequalities with symmetry. Commun. Contemp. Math. 11, 355–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coleman, S., Glazer, V., Martin, C.: Action minima among solutions to a class of Euclidean scalar field equations. Commun. Math. Phys. 58, 211–221 (1978)

    Article  Google Scholar 

  8. Epperson, J., Frazier, M.: An almost orthogonal radial wavelet expansion for radial distributions. J. Fourier Anal. Appl. 1, 311–353 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Franke, J.: On the space \(F^{s}_{p,q}\) of Triebel-Lizorkin type: pointwise multipliers and spaces on domains. Math. Nachr. 125, 29–68 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frazier, M., Jawerth, B.: A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frazier, M., Jawerth, B., Weiss, G.: Paley-Littlewood Decomposition and Function Spaces. American Mathematical Society, Providence (1991)

    Google Scholar 

  13. Jawerth, B.: Some observations on Besov and Lizorkin-Triebel spaces. Math. Scand. 40, 94–104 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Kuzin, I., Pohozaev, S.: Entire Solutions of Semilinear Elliptic Equations. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  15. Kühn, T., Leopold, H.-G., Sickel, W., Skrzypczak, L.: Entropy numbers of Sobolev embeddings of radial Besov spaces. J. Approx. Theory 121, 244–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lions, P.L.: Symmetrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lizorkin, P.I.: Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms. Applications. Izv. Akad. Nauk SSSR 34, 218–247 (1970) (in Russian); engl. transl. in Math. Izv. 4, 225–255 (1970)

    MathSciNet  MATH  Google Scholar 

  18. Peetre, J.: On spaces of Triebel-Lizorkin type. Ark. Mat. 13, 123–130 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peetre, J.: New Thoughts on Besov Spaces. Duke Univ. Press, Durham (1976)

    MATH  Google Scholar 

  20. Rauhut, H.: Time-Frequency and Wavelet Analysis of Functions with Symmetry Properties. Logos, Berlin (2005)

    MATH  Google Scholar 

  21. Rauhut, H., Rösler, M.: Radial multiresolution in dimension three. Constr. Approx. 22, 167–188 (2005)

    Article  Google Scholar 

  22. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations. de Gruyter, Berlin (1996)

    Book  MATH  Google Scholar 

  23. Sickel, W., Skrzypczak, L.: Radial subspaces of Besov and Lizorkin-Triebel spaces: extended Strauss lemma and compactness of embeddings. J. Fourier Anal. Appl. 106, 639–662 (2000)

    Article  MathSciNet  Google Scholar 

  24. Sickel, W., Skrzypczak, L., Vybiral, J.: On the interplay of regularity and decay in case of radial functions I. Non-homogeneous spaces. Commun. Contemp. Math. (to appear). doi:10.1142/S0219199712500058

  25. Sickel, W., Triebel, H.: Hölder inequalities and sharp embeddings in function spaces of \(B^{s}_{p,q}\) and \(F^{s}_{p,q}\) type. Z. Anal. Anwend. 14, 105–140 (1995)

    MathSciNet  MATH  Google Scholar 

  26. Skrzypczak, L.: Rotation invariant subspaces of Besov and Triebel-Lizorkin spaces: compactness of embeddings, smoothness and decay properties. Rev. Mat. Iberoam. 18, 267–299 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MATH  Google Scholar 

  28. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam (1978)

    Google Scholar 

  29. Triebel, H.: Spaces of Besov-Hardy-Sobolev Type. Teubner-Texte Math., vol. 8. Teubner, Leipzig (1978)

    MATH  Google Scholar 

  30. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  31. Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  32. Vybiral, J.: A new proof of the Jawerth-Franke Embedding. Rev. Math. Complut. 21, 75–82 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Vybiral, J.: On sharp embeddings of Besov and Triebel-Lizorkin spaces in the subcritical case. Proc. Am. Math. Soc. 138, 141–146 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Note in Math., vol. 2005. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Skrzypczak.

Additional information

Communicated by David Walnut.

Appendices

Appendix A: Homogeneous Besov and Triebel-Lizorkin Spaces

1.1 A.1 Distribution Spaces Modulo Polynomials

General references for homogeneous Besov and Triebel-Lizorkin spaces are [1012, 19, 30]. For convenience of the reader we recall the definition and a few properties of these spaces.

Let \(\varphi\in C_{0}^{\infty}(\mathbb{R}^{d})\) be a radial function such that supp φ⊂{ξ∈ℝd:|ξ|≤3/2} and φ(ξ)=1 if |ξ|≤1. Then we define

$$ \varphi_j (\xi):= \varphi(2^{-j}\xi) - \varphi(2^{-j+1}\xi), \xi \in\mathbb{R}^d, \quad j \in\mathbb{Z}.$$
(36)

This leads to a specific homogeneous smooth dyadic decomposition of unity since

$$\sum_{j=-\infty}^\infty\varphi_j (\xi) = 1,\quad\xi\neq0.$$

We shall identify tempered distributions modulo polynomials. In fact, we consider the classes

$$[f]:= \{ f+ p: p\ \mbox{polynomial over}\ \mathbb{R}^d\},\quad f \in S'(\mathbb{R}^d).$$

Definition 2

Let 0<q≤∞ and s∈ℝ.

  1. (i)

    Let 0<p≤∞. Then the homogeneous Besov space \(\dot{B}^{s}_{p,q}(\mathbb{R}^{d})\) is the collection of all classes [f] such that

    $$\| [f] |\dot{B}^s_{p,q}(\mathbb{R}^d)\| := \Biggl(\sum_{j=-\infty}^\infty2^{jsq}\| \mathcal{F}^{-1}[\varphi_j (\xi)\mathcal{F} f(\xi)]( \cdot ) |L_p(\mathbb{R}^d)\|^q\Biggr)^{1/q}<\infty.$$
  2. (ii)

    Let 0<p<∞. Then the homogeneous Triebel-Lizorkin space \(\dot{F}^{s}_{p,q}(\mathbb{R}^{d})\) is the collection of all classes [f] such that

    $$\| [f] |\dot{F}^s_{p,q}(\mathbb{R}^d)\| := \Biggl\| \Biggl(\sum_{j=-\infty}^\infty2^{jsq}|\mathcal{F}^{-1}[\varphi_j (\xi)\mathcal{F} f(\xi)]( \cdot )|^q \Biggr)^{1/q} \Big|L_p (\mathbb{R}^d)\Biggr\| <\infty.$$

Remark 16

(i) The definition makes sense since

$$\mathcal{F}^{-1}[\varphi_j \mathcal{F}(f+p)] = \mathcal{F}^{-1}[\varphi_j\mathcal{F}f]$$

for all polynomials p, all fS′(ℝd), and all j∈ℤ. Moreover, the spaces \(\dot{B}^{s}_{p,q}(\mathbb{R}^{d})\) and \(\dot{F}^{s}_{p,q}(\mathbb{R}^{d})\) are independent of the resolution of unity up to equivalence of quasi-norms. Furthermore, we always have

$$\sum_{j=-\infty}^\infty\mathcal{F}^{-1}(\varphi_j \mathcal{F} g) \in[f],\quad\forall g \in[f].$$

(ii) The spaces \(\dot{B}^{s}_{p,q}(\mathbb{R}^{d})\) and \(\dot{F}^{s}_{p,q}(\mathbb{R}^{d})\) are quasi-Banach spaces.

(iii) Let 1<p<∞. Define \(\dot{H}^{s}_{p}(\mathbb{R}^{d})\) as the collection of all classes [f] such that \(\mathcal{F}^{-1}[ |\xi|^{s} \mathcal{F}f(\xi) ](\cdot) \in L_{p} (\mathbb{R}^{d})\) equipped with the induced norm. Usually \(\dot{H}^{s}_{p}(\mathbb{R}^{d})\) are called homogeneous potential spaces. Then \(\dot{H}^{s}_{p}(\mathbb{R}^{d})\) coincides with \(\dot{F}^{s}_{p,2} (\mathbb{R}^{d})\) in the sense of equivalent norms.

The following well-known continuous embeddings are of some use for us.

Lemma 10

Let s,s 0,s 1∈ℝ and 0<q,q 0,q 1≤∞.

  1. (i)

    Let 0<p 0p 1<∞. We have \(\dot{F}^{s_{0}}_{p_{0},q_{0}}(\mathbb{R}^{d}) \hookrightarrow\dot {F}^{s_{1}}_{p_{1},q_{1}}(\mathbb{R}^{d})\) if

    $$ s_0 - \frac{d}{p_0} = s_1 - \frac{d}{p_1}$$
    (37)

    and either p 0<p 1 or p 0=p 1 and q 0q 1.

  2. (ii)

    Let 0<p 0,p 1≤∞. We have \(\dot{B}^{s_{0}}_{p_{0},q_{0}}(\mathbb{R}^{d}) \hookrightarrow\dot {B}^{s_{1}}_{p_{1},q_{1}}(\mathbb{R}^{d})\) if (37), p 0p 1, and q 0q 1 hold.

  3. (iii)

    Let 0<p 0<p 1≤∞. We have

    $$\dot{B}^{s_0}_{p_0,q_0} (\mathbb{R}^d)\hookrightarrow\dot{F}^{s}_{p,q} (\mathbb{R}^d)\hookrightarrow \dot{B}^{s_1}_{p_1,q_1}(\mathbb{R}^d)$$

    if q 0pq 1.

  4. (iv)

    Let 0<p<∞. We have

    $$\dot{B}^{s}_{p,q_0} (\mathbb{R}^d)\hookrightarrow \dot{F}^{s}_{p,q} (\mathbb{R}^d)\hookrightarrow \dot{B}^{s}_{p,q_1}(\mathbb{R}^d)$$

    if q 0≤min(p,q) and max(p,q)≤q 1.

Remark 17

(i) Observe, for fixed s and p the Besov space \(\dot{B}^{s}_{p,\infty}(\mathbb{R}^{d})\) is the largest in the both scales \(\dot{B}^{s}_{p,q}(\mathbb{R}^{d})\) and \(\dot{F}^{s}_{p,q}(\mathbb{R}^{d})\).

(ii) For proofs we refer, e.g., to [13]. This reference does not cover the second embedding in part (iii). For this part we refer to Franke [9], but see also [32].

1.2 A.2 Function Spaces Modulo Polynomials of a Certain Degree

First of all we wish to mention that the mapping

$$[f] \to\sum_{j=-\infty}^\infty\, \mathcal{F}^{-1}[\varphi_j \mathcal{F} f]$$

is an isomorphism which maps \(\dot{F}^{0}_{p,2} (\mathbb{R}^{d})\) onto L p (ℝd) if 1<p<∞, see [18] or [29, Theorem 3.2.1]. Next we turn to homogeneous Sobolev spaces \(\dot{W}^{m}_{p} (\mathbb{R}^{d})\). This time we consider classes of functions modulo polynomials of degree m−1, i.e. we put

$$ [f]_m:=\biggl\{g \in\mathcal{S}' (\mathbb{R}^d): g = f+ \sum_{|\alpha|<m} a_\alpha x^\alpha \biggr\}.$$
(38)

Then \(\dot{W}^{m}_{p} (\mathbb{R}^{d})\) is the collection of all classes [f] m such that D α fL p (ℝd), |α|=m. For m∈ℕ and 1<p<∞ there exists an isomorphism of \(\dot{F}^{m}_{p,2} (\mathbb{R}^{d})\) onto \(\dot{W}^{m}_{p} (\mathbb{R}^{d})\). Proofs can be found in [18] or in [29, Theorem 3.2.1]. A fractional order version is given by the following definition.

Definition 3

Let 0<q≤∞.

  1. (i)

    Let 0<p≤∞. Assume σ p <s<m, for some natural number m. Then the class [f] m of regular distributions belongs to \(\dot{B}^{s,m}_{p,q}(\mathbb{R}^{d})\) if

    $$N^s_{p,q}(f):= \biggl( \int_0^\infty t^{-sq} \sup_{|h|<t} \|\Delta_h^m f(x)|L_p (\mathbb{R}^d)\|^{q}\frac{dt}{t}\biggr)^{1/q} < \infty.$$
  2. (ii)

    Let 0<p<∞. Assume σ p,q (d)<s<m, for some natural number m. Then the class [f] m of regular distributions belongs to \(\dot {F}^{s,m}_{p,q}(\mathbb{R}^{d})\) if

    $$ M^s_{p,q}(f):= \biggl(\int_{{\mathbb{R}}^d} \biggl(\int_0^\infty t^{-sq}\biggl( t^{-d}\int_{|h|\leq t} |\Delta_h^mf(x)|\, dh\biggr)^{q}\frac{dt}{t}\biggr)^{p/q} dx \biggr)^{1/p}< \infty.$$
    (39)

Proposition 3

Under the restrictions from Definition 3 we have the following: there exists an isomorphism of \(\dot{A}^{s,m}_{p,q} (\mathbb{R}^{d})\) onto \(\dot{A}^{s}_{p,q} (\mathbb{R}^{d})\).

Remark 18

With A=B Proposition 3 can be found in [30, Theorem 5.2.3/2]. With A=F it is proved in [5]. Both references cover the case of Banach spaces only. However, the methods from [5] extend to the quasi-Banach space case.

The Regularity of Some Test Functions

Now we turn to the regularity of g α,δ , see (10), with respect to the fractional order spaces. There are several possibilities to attack this problem. We decided for using differences, see Proposition 3. The following two lemmas will cover Proposition 1.

Lemma 11

Let 0<p<∞, 0<q≤∞ and σ p,q <s<d/p.

  1. (i)

    The function g α,0 belongs to \(\dot{F}^{s}_{p,q}(\mathbb{R}^{d})\) if, and only if \(\alpha> \frac{d}{p} - s\).

  2. (ii)

    Let δ>0. Then g α,δ belongs to \(\dot{F}^{s}_{p,q}(\mathbb{R}^{d})\) if either \(\alpha> \frac{d}{p} - s\) (δ≥0 arbitrary) or \(\alpha= \frac{d}{p} - s \) and δ>1/p.

Proof

Step 1. Proof of (i) in case q=∞. For given s>0 there exists an integer M∈ℕ0 and a real positive number τ∈(0,1] such that s=M+τ. The function g α,0 is smooth. Hence we may apply the Mean Value Theorem. This implies

$$\Delta_h^{M} g_{\alpha,0} (x) = |h|^{M}D_e^{M} (g_{\alpha,0})(\xi),$$

where e is the direction from x to x+Mh and ξ=x+te for some t∈(0,M|h|), \(D_{e}^{M}\) denotes the M-th order derivative of g α,0 (restricted to this line) in direction e. We obtain

(40)

Mathematical induction yields

$$D^{\beta} g_{\alpha,0}(\xi) =(1+|\xi|^2)^{-\frac{\alpha}{2} - |\beta|} p_\beta(\xi) ,\quad\xi\in\mathbb{R}^d,$$

where p β is a polynomial of degree at most |β|. Let |x|=r>2max((M+1)|h|,1) and |β|=M. Then

(41)

as long as |ξx|,|ηx|≤(M+1)|h|. Hence, with (40) and (41) we get

(42)

This can be complemented by the obvious inequality

(43)

since g α,0 is a bounded C function. According to (39) it remains to check

(44)

Combining (42)–(44) we have proved sufficiency in (i) with q=∞. Now, let q<∞. We choose 0<p 0<p and define

$$s_0:= s - \frac{d}{p} + \frac{d}{p_0}.$$

From the arguments used above we conclude that \(g_{\alpha,0} \in\dot{F}^{s_{0}}_{p_{0},\infty}(\mathbb{R}^{d})\), but \(\dot{F}^{s_{0}}_{p_{0},\infty}(\mathbb{R}^{d}) \hookrightarrow\dot{F}^{s}_{p,q}(\mathbb{R}^{d})\), see Lemma 10(i). Observe, that also in case s=M+1 the above estimate is sufficient to guarantee \(g_{\alpha,0} \in\dot{F}^{s}_{p,\infty}(\mathbb{R}^{d})\).

Step 2. Sketch of the proof of (ii). We only describe the needed modifications for the limiting situation s+α=d/p.

Substep 2.1. Let q=∞. First observe, that Leibniz formula for derivatives of products yields

where p ϱ are polynomials of degree at most |ϱ|. The chain rule yields

for appropriate constants \(c_{\ell, \gamma^{1}, \ldots , \gamma^{\ell}}\). Obviously

$$|D^{\gamma} (\log(e+|\xi|^2)) | \lesssim|\xi|^{-|\gamma|},\quad|\xi |\ge1,\ |\gamma|>0,$$

and consequently

$$ |D^\vartheta(\log(e+|\xi|^2))^{-\delta}| \lesssim|\xi|^{-|\vartheta|}(\log(e+|\xi|^2))^{-\delta-1},\quad|\xi|\ge1,\ |\vartheta|>0.$$
(45)

As in (41) we derive

(46)

where |ξx|, |ηx|≤(M+1)|h|, |x|=r>2max((M+1)|h|,1) and |β|=M. Now, let \(P_{\alpha,\varrho} (\xi):= (1+|\xi|^{2})^{-\frac{\alpha}{2} - |\varrho|}p_{\varrho}(\xi)\). Similarly as in (46), see also (41), and using (45) we find

under the same restrictions as in (46). This leads to the following modification of (42)

The term

$$\int_{|x|<2}\biggl(\sup_{t>0} t^{-s}t^{-d}\int_{|h|<t} |\Delta_h^{M+1} g_{\alpha,\delta}(x)|\, dh \biggr)^p \, dx$$

can be estimated as in (43). For the modification of (44) observe

$$\int_{0}^{t} r^{d-1}(1+ r^2)^{- \alpha/2}(\log(e + r^2))^{-\delta} \, dr \lesssim t^{d-\alpha} (\log(e+t))^{-\delta}$$

uniformly in t>1/M, since α<d. This proves \(g_{\alpha,\delta} \in\dot{F}^{\frac{d}{p} - \alpha}_{p,\infty}(\mathbb{R}^{d})\) if δ>1/p.

Substep 2.2. Let 0<q≤∞, 0<p<∞ and \(0 < s := \frac{d}{p}- \alpha< \frac{d}{p}\). We choose 0<p 0<p and define

$$s_0:= s - \frac{d}{p} + \frac{d}{p_0}= \frac{d}{p_0} - \alpha.$$

From Substep 2.1 and Lemma 10(i) we conclude that

$$g_{\alpha,\delta} \in\dot{F}^{s_0}_{p_0,\infty}(\mathbb{R}^d)\hookrightarrow\dot{F}^{s}_{p,q}(\mathbb{R}^d)$$

if δ>1/p 0. For p 0p the claim follows.

Step 3. Necessity in (i). Let us assume \(g_{\alpha,0} \in\dot{F}^{s}_{p,\infty} (\mathbb{R}^{d})\) with \(\alpha=\frac{d}{p} -s \). Then, by Lemma 10(i), it follows that the class [g α,0] contains at least one element which belongs to L t (ℝd), \(t= \frac{d}{\frac{d}{p} - s}\). Since there is at most one element in such a class which decays near infinity we get g α,0L t (ℝd). By Lemma 4(i) we conclude δ>1/t>0. This is a contradiction. □

Lemma 12

Let 0<p<∞, 0<q≤∞ and σ p <s<d/p.

  1. (i)

    The function g α,0 belongs to \(\dot{B}^{s}_{p,q}(\mathbb{R}^{d})\) if \(\alpha> \frac{d}{p} - s\).

  2. (ii)

    Let δ>0. Then g α,δ belongs to \(\dot{B}^{s}_{p,q}(\mathbb{R}^{d})\) if either \(\alpha> \frac{d}{p} - s\) or \(\alpha= \frac{d}{p} - s \) and δ>1/q.

Proof

Both assertions follow from Lemma 11 by using Lemma 10(iii). □

Appendix B: Radial Distributions and Atomic Decompositions

We recall a construction of Epperson and Frazier [8]. We will do that with certain detail because we are going to use it with a different normalization.

Let J ν denote the Bessel function of order ν, \(\nu\ge-\frac{1}{2}\), defined by

$$J_\nu(t) := \left\{\begin{array}{@{}l@{\quad}l}\frac{(t/2)^\nu}{\sqrt{\pi} \Gamma(\nu+ \frac{1}{2})}\int_{-1}^1 (1-y^2)^{\nu-1/2} e^{i ty}\, dy& \mbox{if}\ \nu> -\frac{1}{2}, \\[2mm](\frac{2}{\pi t})^{1/2}\cos t & \mbox{if}\ \nu= - \frac{1}{2},\end{array}\right.\quad t \in\mathbb{R}.$$

Let μ ν,0<μ ν,1<⋯ be the positive zeros of J ν . We put μ ν,−1:=0. Then

$$\mu_{\nu,k}= \pi\biggl(k+\frac{\nu}{2}\biggr) + O\biggl(\frac{1}{k+1}\biggr)$$

and

$$\mu_{\nu,k} - \mu_{\nu,k-1}= \pi + O\biggl(\frac{1}{k+1}\biggr) .$$

For k=0,1,2,… we introduce associated annuli (balls, if k=0)

From now on we fix \(\nu= \frac{d-2}{2}\) and drop it in notation.

Next we recall the definition of smooth radial atoms from [8].

Definition 4

Let s∈ℝ and 0<p<∞. A radial function a is called a smooth radial atom associated to \({\mathbb{A}}_{j,k} \) if it satisfies the following conditions:

(47)
(48)

Here c γ :=1 if |γ|≤s+1 and c γ must be independent of j and k if |γ|>s+1.

As usual one has to introduce associated sequence spaces as well. Let \(\chi_{{\mathbb{A}}_{j,k} }\) denote the characteristic function of the set \({\mathbb{A}}_{j,k} \). Then we define \(\widetilde{\chi}^{(p)}_{j,k} :=2^{\frac{jd}{p}}\chi_{\mathbb{A}_{j,k}}\). The announced sequence spaces are then given by

and

Again we will use these notation with \(\dot{a}_{p,q}\) in place of \(\dot {b}_{p,q}\) or \(\dot{f}_{p,q}\) if there is no need to distinguish these cases. Now we are in position to formulate the result of Epperson and Frazier [8], see Theorem 4.1 and the comments in Sect. 5.

Theorem 6

Suppose 0<p<∞, 0<q≤∞ and either s>σ p,q −1 if A=F or s>σ p −1 if A=B. For \([f] \in R\dot{A}^{s}_{p,q}(\mathbb{R}^{d})\) there exist smooth radial atoms a j,k associated to \({\mathbb{A}}_{j,k} \), j∈ℤ, k∈ℕ0, and a sequence \((s_{j,k})_{j,k} \in\dot{a}_{p,q}\), such that

$$ \sum_{j \in\mathbb{Z}} \sum_{k=0}^\infty s_{j,k}\,a_{j,k}\in[f]$$
(49)

and

$$\|[f] |R\dot{A}^s_{p,q}(\mathbb{R}^d)\|\asymp \| (s_{j,k})_{j,k}|\dot{a}_{p,q}\|.$$

Remark 19

The identity (49) should be interpreted in the following way. The sequence (f n ) n , where

$$f_n =\sum_{j=-n}^{n} \sum_{k=0}^\infty s_{j,k}a_{j,k},$$

converges to some g∈[f] with respect to the quasi-norm in \(R\dot {A}^{s}_{p,q}(\mathbb{R}^{d})\) as n tends to infinity, if q<∞, and in \(S'(\mathbb{R}^{d})/{\mathcal{P}}\) if q=∞.

We need another result of Epperson and Frazier, see Theorem 3.1 and the comments in Sect. 5 in [8].

Lemma 13

Suppose 0<p<∞, 0<q≤∞ and either s>σ p,q if A=F or s>σ p if A=B. There exists a positive constant c such that for any sequence \((a_{j,k})_{j\in\mathbb{Z}, k\in\mathbb{N}_{0}}\) of radial functions satisfying the conditions (47), (48) (restricted to values of γ such that |γ|≤s+1) and any sequence \((s_{j,k})_{j,k} \in\dot{a}_{p,q}\) the inequality

$$\Biggl\|\sum_{j=-\infty}^\infty\sum_{k=0}^\infty s_{j,k}a_{j,k} \Big|R\dot{A}^s_{p,q}(\mathbb{R}^d)\Biggr\|\le c \|(s_{j,k})_{j,k} |\dot{a}_{p,q}\|$$

holds.

Remark 20

Radial subspaces of homogeneous Besov spaces have been characterized in a wavelet-style by Rauhut [20] and Rauhut and Rösler [21]. These methods could be used here as well.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sickel, W., Skrzypczak, L. On the Interplay of Regularity and Decay in Case of Radial Functions II. Homogeneous Spaces. J Fourier Anal Appl 18, 548–582 (2012). https://doi.org/10.1007/s00041-011-9205-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9205-2

Keywords

Mathematics Subject Classification (2000)

Navigation