Skip to main content
Log in

Radial subspaces of Besov and Lizorkin-Triebel classes: Extended strauss lemma and compactness of embeddings

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this article, subspaces of radial distributions of Besov-Lizorkin-Triebel type are investigated. We give sufficient and necessary conditions for the compactness of the Sobolev-type embeddings. It is also proved that smoothness of the radial function implies decay of the function at infinity. This extends the classical Strauss lemma. The main tool in our investigations consists of an adapted atomic decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, B. and Lions, P.L. (1979). Existence of a ground state in nonlinear equations of the type Klein-Gordon, inVariational Inequalities and Complementary Theory and Applications, Wiley, New York.

    Google Scholar 

  2. Coleman, S., Glazer, V., and Martin, A. (1978). Action minima among solutions to a class of Euclidean scalar field equations,Comm. in Math. Physics,58, 211–221.

    Article  Google Scholar 

  3. Yi, D. (1990) Non-radial solutions of semilinear elliptic equations,Math. Acta Sci.,10, 229–239.

    MATH  Google Scholar 

  4. Ebihara Y. and Schonbek, T.P. (1986). On the (non)compactness of the radial Sobolev spaces,Hiroshima Math. J.,16, 665–669.

    MATH  MathSciNet  Google Scholar 

  5. Edmunds, D.E. and Triebel, H. (1996).Function Spaces, Entropy Numbers and Differential Operators. Cambridge University Press, Cambridge.

    Google Scholar 

  6. Epperson, J. and Frazier, M. (1995). An almost orthogonal radial wavelet expansion for radial distributions.J. Fourier Analysis Appl.,1, 311–353.

    Article  MATH  MathSciNet  Google Scholar 

  7. Epperson, J. and Frazier, M. (1996). Polar Wavelets and Associated Littlewood-Paley Theory.Dissertationes Mathematicae,348, 51.

    MATH  MathSciNet  Google Scholar 

  8. Frazier, M. and Jawerth, B. (1985). Decomposition of Besov spaces,Indiana Univ. Math. J.,34, 777–799.

    Article  MATH  MathSciNet  Google Scholar 

  9. Frazier, M. and Jawerth, B. (1990). A discrete transform and decomposition of distribution space,J. Funct. Anal.,93, 34–170.

    Article  MATH  MathSciNet  Google Scholar 

  10. Frazier, M., Jawerth, B., and Weiss, G. (1991). Littlewood-Paley theory and the study of function spaces,CBMS Conf. Series,79, AMS, 34–170.

    MathSciNet  Google Scholar 

  11. Hebey, E. (1996).Sobolev Spaces on Riemannian Manifolds. LNM 1635, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  12. Hebey, E. and Vaugon, M. (1997). Sobolev spaces in the presence of symmetries,J. Math. Pures Appl.,76, 859–881.

    MATH  MathSciNet  Google Scholar 

  13. Jawerth, B. (1977). Some observations on Besov and Lizorkin-Triebel spaces,Math. Scan.,40, 94–104.

    MATH  MathSciNet  Google Scholar 

  14. Kuzin, I. (1994). Existence theorems for nonlinear elliptic problems inR N in the class of block-radial functions,Differential Equations,30, 637–646.

    MATH  MathSciNet  Google Scholar 

  15. Kuzin, I. and Pohozaev, S. (1997).Entire Solutions of Semilinear Elliptic Equations. Birkhäuser, Basel.

    MATH  Google Scholar 

  16. Lions, P.-L. (1982). Symétrie et compacité dans les espaces de Sobolev,J. Funct. Anal.,49, 315–334.

    Article  MATH  MathSciNet  Google Scholar 

  17. Peetre, J. (1976). New Thoughts on Besov spaces,Duke Univ. Math. Series, Duke Univ., Durham.

    Google Scholar 

  18. Sickel, W. and Triebel, H. (1995). Hölder inequality and sharp embeddings in function spaces ofB s pq andF s pq type,Z. Anal. Anwendungen,14, 105–140.

    MATH  MathSciNet  Google Scholar 

  19. Skrzypczak, L. (1998). Atomic decompositions on manifolds with bounded geometry,Forum Math.,10, 19–38.

    Article  MATH  MathSciNet  Google Scholar 

  20. Skrzypczak, L. (1999). Heat and harmonic extensions for function spaces of Hardy-Sobolev-Besov type on symmetric spaces an Lie groups,J. Approx. Theory,96, 149–170.

    Article  MATH  MathSciNet  Google Scholar 

  21. Skrzypczak, L. (1996). Heat semi-group and function spaces on symmetric spaces of noncompact type,Zeitschr. Anal. ihre Anwend.,15, 881–899.

    MATH  MathSciNet  Google Scholar 

  22. Strauss, W.A. (1977). Existence of solitary waves in higher dimensions,Comm. in Math. Physics,55, 149–162.

    Article  MATH  Google Scholar 

  23. Triebel, H. (1983).Theory of Function Spaces. Birkhäuser, Basel.

    Google Scholar 

  24. Triebel, H. (1992).Theory of Function Spaces II. Birkhäuser, Basel.

    MATH  Google Scholar 

  25. Triebel, H. (1997).Fractals and Spectra Related to Fourier Analysis and Function Spaces. Birkhäuser, Basel.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Frazier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sickel, W., Skrzypczak, L. Radial subspaces of Besov and Lizorkin-Triebel classes: Extended strauss lemma and compactness of embeddings. The Journal of Fourier Analysis and Applications 6, 639–662 (2000). https://doi.org/10.1007/BF02510700

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510700

Math subject classifications

Keywords and phrases

Navigation