Skip to main content
Log in

Spectral Conditions for Strong Local Nondeterminism and Exact Hausdorff Measure of Ranges of Gaussian Random Fields

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Let X={X(t),t∈ℝN} be a Gaussian random field with values in ℝd defined by

$$X(t) = (X_1(t), \ldots, X_d(t)),\quad t \in {\mathbb{R}}^N,$$

where X 1,…,X d are independent copies of a real-valued, centered, anisotropic Gaussian random field X 0 which has stationary increments and the property of strong local nondeterminism. In this paper we determine the exact Hausdorff measure function for the range X([0,1]N).

We also provide a sufficient condition for a Gaussian random field with stationary increments to be strongly locally nondeterministic. This condition is given in terms of the spectral measures of the Gaussian random fields which may contain either an absolutely continuous or discrete part. This result strengthens and extends significantly the related theorems of Berman (Indiana Univ. Math. J. 23:69–94, 1973, Stochast. Process. Appl. 27:73–84, 1988), Pitt (Indiana Univ. Math. J. 27:309–330, 1978) and Xiao (Asymptotic Theory in Probability and Statistics with Applications, pp. 136–176, 2007, A Minicourse on Stochastic Partial Differential Equations, Lecture Notes in Math, vol. 1962, pp. 145–212, 2009), and will have wider applicability beyond the scope of the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.J.: The Geometry of Random Fields. Wiley, New York (1981)

    MATH  Google Scholar 

  2. Anderson, T.W.: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Am. Math. Soc. 6, 170–176 (1955)

    Article  MATH  Google Scholar 

  3. Ayache, A., Xiao, Y.: Asymptotic growth properties and Hausdorff dimension of fractional Brownian sheets. J. Fourier Anal. Appl. 11, 407–439 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baraka, D., Mountford, T.: A law of iterated logarithm for fractional Brownian motions. In: Séminaire de Probabilités XLI. Lecture Notes in Math. vol. 1934, pp. 161–179. Springer, Berlin (2008)

    Chapter  Google Scholar 

  5. Baraka, D., Mountford, T.: The exact Hausdorff measure of the zero set of fractional Brownian motion. J. Theor. Probab. 24, 271–293 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benassi, A., Jaffard, S., Roux, D.: Elliptic Gaussian random processes. Rev. Mat. Iberoam. 13, 19–90 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Springer, New York (1975)

    MATH  Google Scholar 

  8. Berman, S.M.: Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23, 69–94 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berman, S.M.: Spectral conditions for local nondeterminism. Stoch. Process. Appl. 27, 73–84 (1988)

    Article  Google Scholar 

  10. Biermé, H., Lacaux, C., Xiao, Y.: Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull. Lond. Math. Soc. 41, 253–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Falconer, K.J.: Fractal Geometry—Mathematical Foundations and Applications. Wiley, New York (1990)

    MATH  Google Scholar 

  12. Istas, J.: Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10, 254–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kahane, J.-P.: Some Random Series of Functions, 2nd edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  14. Loéve, L.: Probability Theory I. Springer, New York (1977)

    MATH  Google Scholar 

  15. Luan, N., Xiao, Y.: Chung’s law of the iterated logarithm for anisotropic Gaussian random fields. Stat. Probab. Lett. 80, 1886–1895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meerschaert, M.M., Wang, W., Xiao, Y.: Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields. Trans. Amer. Math. Soc. (2011, to appear)

  17. Monrad, D., Rootzén, H.: Small values of Gaussian processes and functional laws of the iterated logarithm. Probab. Theory Relat. Fields 101, 173–192 (1995)

    Article  MATH  Google Scholar 

  18. Nualart, E., Viens, F.: The fractional stochastic heat equation on the circle: time regularity and potential theory. Stoch. Process. Appl. 119, 1505–1540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pitt, L.D.: Stationary Gaussian Markov fields on ℝd with a deterministic component. J. Multivar. Anal. 5, 300–311 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pitt, L.D.: Local times for Gaussian vector fields. Indiana Univ. Math. J. 27, 309–330 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rogers, C.A., Taylor, S.J.: Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8, 1–31 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  22. Talagrand, M.: New Gaussian estimates for enlarged balls. Geom. Funct. Anal. 3, 502–526 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Talagrand, M.: Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23, 767–775 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Talagrand, M.: Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields 112, 545–563 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tindel, S., Tudor, C.A., Viens, F.: Sharp Gaussian regularity on the circle, and applications to the fractional stochastic heat equation. J. Funct. Anal. 217, 280–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, D., Xiao, Y.: Uniform Hausdorff dimension results for Gaussian random fields. Sci. China Ser. A 52, 1478–1496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, D., Xiao, Y.: On local times of anisotropic Gaussian random fields. Commun. Stoch. Anal. 5, 15–39 (2011)

    MathSciNet  Google Scholar 

  28. Xiao, Y.: Hausdorff measure of the sample paths of Gaussian random fields. Osaka J. Math. 33, 895–913 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Xiao, Y.: Hausdorff dimension of the graph of fractional Brownian motion. Math. Proc. Camb. Philos. Soc. 122, 565–576 (1997a)

    Article  MATH  Google Scholar 

  30. Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109, 129–157 (1997b)

    Article  MATH  Google Scholar 

  31. Xiao, Y.: Strong local nondeterminism of Gaussian random fields and its applications. In: Lai, T.-L., Shao, Q.-M., Qian, L. (eds.) Asymptotic Theory in Probability and Statistics with Applications, pp. 136–176. Higher Education Press, Beijing (2007)

    Google Scholar 

  32. Xiao, Y.: Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan, D., Rassoul-Agha, F. (eds.) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math., vol. 1962, pp. 145–212. Springer, New York (2009)

    Chapter  Google Scholar 

  33. Xue, Y., Xiao, Y.: Fractal and smoothness properties of anisotropic Gaussian models. Frontiers Math. China (2011, to appear)

  34. Yaglom, A.M.: Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl. 2, 273–320 (1957)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Xiao.

Additional information

Communicated by Christian Houdre.

Research partially supported by NSF grant DMS-1006903.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, N., Xiao, Y. Spectral Conditions for Strong Local Nondeterminism and Exact Hausdorff Measure of Ranges of Gaussian Random Fields. J Fourier Anal Appl 18, 118–145 (2012). https://doi.org/10.1007/s00041-011-9193-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9193-2

Keywords

Mathematics Subject Classification (2000)2010

Navigation