Skip to main content

Advertisement

Log in

Elevation matters: contrasting effects of climate change on the vegetation development at different elevations in the Bavarian Alps

  • VEGETATION IN COLD ENVIRONMENTS UNDER CLIMATE CHANGE
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Despite broad evidence that recent climate change considerably affects alpine-nival vegetation, there are only a few studies revealing climate-induced vegetation changes in all vegetation belts above the actual treeline. Here, we use historical and recent vegetation surveys from the Bavarian Alps (Germany) to examine biodiversity, structural and functional trait composition changes in subalpine, lower and higher alpine vegetation belts during the past 50 years. Although species richness did not change significantly in dense subalpine vegetation, immigration of species from lower elevations and increased environmental favorability for already present thermophilic species led to an increase of plant cover (+23 %). In low alpine plots, a significant increase in species richness and plant cover (+41 and +18 %, respectively) was detected, due to gap availability and low competitive ability of alpine species. The results of the three-table ordination technique (RLQ) revealed that in subalpine and low alpine plots species with traits that are advantageous under warmer conditions, such as higher specific leaf area, high stature and heavier seeds, significantly increased their frequencies and abundances. Floristic and vegetation changes of high alpine plots were contrasting to those found in the subalpine and the low alpine vegetation located both in the study region and close mountain ridges. Despite the temperature increase and sufficient availability of colonisation gaps for newcomers, species richness (−24 %) and plant cover (−25 %) significantly decreased, probably due to permafrost degradation (as a consequence of recent warming). Our results suggest that considering vegetation characteristics as well as environmental conditions of different vegetation belts above the treeline is critical to accurately understand the response of alpine vegetation to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511

    Google Scholar 

  • Atkin O, Botman B, Lambers H (1996) The causes of inherently slow growth in alpine plants: an analysis based on the underlying carbon economies of alpine and lowland Poa species. Funct Ecol 10:698–707

    Article  Google Scholar 

  • Bernhardt-Römermann M, Römermann C, Nuske R, Parth A, Klotz S, Schmidt W, Stadler J (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos 117:1533–1541

    Article  Google Scholar 

  • Böckli L, Nötzli J, Gruber S (2011) PermaNET-BY: Untersuchung des Permafrosts in den Bayerischen Alpen. University of Zurich, Zürich, Department of Geography

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie: Grundzüge der Vegetationskunde. Springer, Wien

    Book  Google Scholar 

  • Cannone N, Sgorbati S, Guglielmin M (2007) Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 5:360–364

    Article  Google Scholar 

  • Choler P (2005) Consistent shifts in alpine plant traits along a mesotopographical gradient. Arct Antarc Alp Res 37:444–453

    Article  Google Scholar 

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308

    Article  Google Scholar 

  • Crawley MJ (2013) The R book. Wiley, New York

    Google Scholar 

  • Danby R, Koh S, Hik D, Price L (2011) Four decades of plant community change in the alpine tundra of southwest Yukon, Canada. Ambio 40:660–671

    Article  PubMed  PubMed Central  Google Scholar 

  • De Frenne P, Graae BJ, Rodríguez-Sánchez F, Kolb A, Chabrerie O, Decocq G, De Kort H, De Schrijver A, Diekmann M, Eriksson O, Gruwez R, Hermy M, Lenoir J, Plue J, Coomes DA, Verheyen K (2013) Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J Ecol 101:784–795

    Article  Google Scholar 

  • Diaz S, Cabido M, Zak M, Carretero EM, Araníbar J (1999) Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. J Veg Sci 10:651–660

    Article  Google Scholar 

  • Dolédec S, Chessel D, Braak CJF, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166

    Article  Google Scholar 

  • Dray S, Dufour A-B (2007) The ade4 package-II: two-table and K-table methods. R News 7:47–52

    Google Scholar 

  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnbock T, Ertl S, Fischer A, Lenoir J, Svenning J-C, Psomas A, Schmatz DR, Silc U, Vittoz P, Hulber K (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang 2:619–622

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart

    Google Scholar 

  • Erschbamer B, Ruth NS, Winkler E (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19:855–862

    Article  Google Scholar 

  • Erschbamer B, Kiebacher T, Mallaun M, Unterluggauer P (2009) Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecol 202:79–89

    Article  Google Scholar 

  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernandez Calzado MR, Kazakis G, Krajci J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J-P, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2:111–115

    Article  Google Scholar 

  • Grime JP (2002) Plant strategies, vegetation processes, and ecosystem properties. Wileys, New York

    Google Scholar 

  • Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res: Earth Surface 112: F02S18

  • Hennig C (2009) Fixed point clusters, clusterwise regression and discriminant plots. Package fpc for R

  • Hill M, Gauch J (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hill M, Smith A (1976) Principal component analysis of taxonomic data with multi-state discrete characters. Taxon 25:249–255

    Article  Google Scholar 

  • Jump AS, Huang T-J, Chou C-H (2012) Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35:204–210

    Article  Google Scholar 

  • Jurasinski G, Kreyling J (2007) Upward shift of alpine plants increases floristic similarity of mountain summits. J Veg Sci 18:711–718

    Article  Google Scholar 

  • Klanderud K (2005) Climate change effects on species interactions in an alpine plant community. J Ecol 93:127–137

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, Groenendael JMv, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Gőtzenberger L, Hodgson JG, Jackel AK, Kühn I, Kunzmann D, Ozinga WA, Rőmermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Körner C (1999) Alpine plant life, functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Kudernatsch T (2005) Auswirkungen der globalen Erwärmung auf die Vegetation alpiner Kalk-Magerrasen im Nationalpark Berchtesgaden. Dissertation, Technische Universität München

  • Lepš J, de Bello F, Šmilauer P, Doležal J (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 34:856–863

    Article  Google Scholar 

  • Lippert W (1966) Die Pflanzengesellschaften des Naturschutzgebietes Berchtesgaden. Ber Bayer Bot Ges 39:67–122

    Google Scholar 

  • Marke T, Strasser U, Kraller G, Warscher M, Kunstmann H, Franz H, Vogel M (2013) The Berchtesgaden National Park (Bavaria, Germany): a platform for interdisciplinary catchment research. Environ Earth Sci 69:679–694

    Article  Google Scholar 

  • McKone MJ, Kelly D, Lee WG (1998) Effect of climate change on mast-seeding species: frequency of mass flowering and escape from specialist insect seed predators. Glob Change Biol 4:591–596

    Article  Google Scholar 

  • Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, Oxford

    Google Scholar 

  • Nationalpark Berchtesgaden (2001) Nationalparkplan. München

  • Oberdorfer E (1978) Süddeutsche Pflanzengesellschaften – Teil II: Sand- und Trockenrasen, Heide- und Borstgrass-Gesellschaften, alpine Magerrasen, Saum-Gesellschaften, Schalg- und Hochstauden-Fluren. Gustav Fischer, Jena

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R, Simpson GL, Oksanen MJ, Suggests M (2013) Package ‘vegan’

  • Pauli H, Gottfried M, Grabherr G (2003) Effects of climate change on the alpine and nival vegetation of the Alps. J Mount Ecol 7:9–12

    Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puşcaş M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phyt 182:565–588

    Article  Google Scholar 

  • R core development Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rosbakh S, Poschlod P (2014) Initial temperature of seed germination as related to species occurrence along a temperature gradient. Funct Ecol. doi:10.1111/1365-2435.12304

    Google Scholar 

  • Ross LC, Woodin SJ, Hester A, Thompson DBA, Birks HJB (2010) How important is plot relocation accuracy when interpreting re-visitation studies of vegetation change? Plant Ecol Divers 3:1–8

    Article  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer, Berlin

    Book  Google Scholar 

  • Schönfelder P, Bresinsky A (1990) Verbreitungsatlas der Farn- und Blütenpflanzen Bayerns. Ulmer, Stuttgart

    Google Scholar 

  • Schweingruber FH, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res 79:195–415

    Google Scholar 

  • Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol 100:652–661

    Article  Google Scholar 

  • Spasojevic MJ, Bowman WD, Humphries HC, Seastedt TR, Suding KN (2013) Changes in alpine vegetation over 21 years: are patterns across a heterogeneous landscape consistent with predictions? Ecosphere 4:1–18

    Article  Google Scholar 

  • Stöckli V, Wipf S, Nilsson C, Rixen C (2011) Using historical plant surveys to track biodiversity on mountain summits. Plant Ecol Divers 4:415–425

    Article  Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Chang 50:77–109

    Article  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Venn S, Green K, Pickering C, Morgan J (2011) Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol 212:1491–1499

    Article  Google Scholar 

  • Venn S, Pickering C, Green K (2012) Short-term variation in species richness across an altitudinal gradient of alpine summits. Biodivers Conserv 21:3157–3186

    Article  Google Scholar 

  • Vittoz P, Bodin J, Ungricht S, Burga CA, Walther G-R (2008) One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J Veg Sci 19:671–680

    Article  Google Scholar 

  • Vittoz P, Randin C, Dutoit A, Bonnet F, Hegg O (2009) Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob Change Biol 15:209–220

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Wikum D, Shanholtzer GF (1978) Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. Environ Manage 2:323–329

    Article  Google Scholar 

  • Windmaißer T, Reisch C (2013) Long-term study of an alpine grassland: local constancy in times of global change. Alp Bot 123:1–6

    Article  Google Scholar 

  • Wipf S, Stöckli V, Herz K, Rixen C (2013) The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol Divers 6:447–455

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Inge Lauer, Martin Leipold and Florian Neumaier for their help with trait measurements and Sabine Fischer for the preparation of Fig. 1. We acknowledge Franziska Bucher and three anonymous referees for their useful comments and suggestions on a previous version of this article. We also thank Stephan Gruber for the consultations on permafrost occurrence in the Alps. Accommodation and access to the study sites was provided by the National Park Berchtesgaden. The research funding was provided by the FORKAST project (TP 12 Poschlod) which was financed by the Ministry of Environment and of Science in Bavaria. We thank Wolfgang Lippert whose vegetation survey in the 1960ies made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Rosbakh.

Additional information

This article is part of the special issue Vegetation in cold environments under climate change.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 79 kb) Appendix 1. Environmental characteristics of the collection sites

Supplementary material 2 (PDF 40 kb)Appendix 2. Detrended correspondence analysis (DCA) ordination of the studied plots

35_2014_139_MOESM3_ESM.pdf

Supplementary material 3 (PDF 36 kb)Appendix 3. Clusters and their corresponding species obtained by k-mean clustering of species scores of RLQ technique

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosbakh, S., Bernhardt-Römermann, M. & Poschlod, P. Elevation matters: contrasting effects of climate change on the vegetation development at different elevations in the Bavarian Alps. Alp Botany 124, 143–154 (2014). https://doi.org/10.1007/s00035-014-0139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-014-0139-6

Keywords

Navigation