Skip to main content

Environmental Drivers of Species Composition and Tree Species Density of a Near-Natural Central Himalayan Treeline Ecotone: Consequences for the Response to Climate Change

  • Chapter
  • First Online:
Mountain Landscapes in Transition

Abstract

Climate warming is expected to facilitate alpine treeline advance to higher elevations. However, empirical studies in diverse mountain ranges give evidence of both advancing alpine treelines and rather insignificant responses. In this context, we aim at analysing environmental drivers of species composition and tree species density in the near-natural treeline ecotone in Rolwaling Himal, Nepal, in order to infer the sensitivity and responsiveness to climate warming. We differentiated plant communities and analysed population densities of tree species along the treeline ecotone from closed forest stands via the krummholz belt to alpine dwarf shrub heaths (3700–4300 m). We determined vegetation–environment–soil relationships, i.e. the effects of changing environmental conditions (e.g. nutrient and thermal deficits, plant interactions) on plant communities and stand structures across the ecotone by means of multivariate statistics. In particular, we focus on explaining the high competitiveness of Rhododendron campanulatum forming a dense krummholz belt and on its relation to climate change. We identified five plant communities, belonging to two different classes. Soil temperature, nitrogen supply and availability, and soil moisture content mainly differentiate species composition of the identified communities. Results indicate that trees in the ecotone show species-specific responses to the influence of site conditions, and that juvenile and adult tree responses are modulated by environmental constraints in differing intensity. In general, the analysed vegetation–environment relationships in the treeline ecotone suggest that the dense Rhododendron krummholz belt largely prevents the upward migration of other tree species and thus constrains the future response of Himalayan krummholz treelines to climate warming.

This chapter was prepared by merging, modifying and completing the previously published papers Bürzle et al. (2017), Schwab et al. (2017) and Schwab (2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bach A, Price LW (2013) Mountain climate. In: Price MF, Byers AC, Friend DA, Kohler T, Price LW (eds) Mountain geography: physical and human dimensions. University of California Press, Berkeley, pp 41–84

    Google Scholar 

  • Baptist F, Aranjuelo I (2012) Interaction of carbon and nitrogen metabolisms in alpine plants. In: Lütz C (ed) Plants in alpine regions—cell physiology of adaption and survival strategies. Springer, Wien, Austria, pp 121–134

    Google Scholar 

  • Batllori E, Camarero JJ, Gutiérrez E (2010) Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes irrespective of the past disturbance regime. J Biogeogr 37:1938–1950. https://doi.org/10.1111/j.1365-2699.2010.02348.x

    Article  Google Scholar 

  • Bäumler R (2015) Soils. In: Miehe G, Pendry C, Chaudhary RP (eds) Nepal: an introduction to the natural history, ecology and human environment in the Himalayas. Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom, pp 125–134

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change 85:159–177. https://doi.org/10.1007/s10584-006-9196-1

    Article  Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the Northwestern Himalaya: 1866–2006. Int J Climatol 30:535–548. https://doi.org/10.1002/joc.1920

    Article  Google Scholar 

  • Böhner J, Miehe G, Miehe S, Nagy L (2015) Climate and weather. In: Miehe G, Pendry C, Chaudhary RP (eds) Nepal: an introduction to the natural history, ecology and human environment in the Himalayas. Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom, pp 23–90

    Google Scholar 

  • Bradley RL, Titus BD, Preston CP (2000) Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil Biol Biochem 32:1227–1240. https://doi.org/10.1016/S0038-0717(00)00039-0

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Springer, Wien

    Google Scholar 

  • Brodersen CR, Germino MJ, Johnson DM, Reinhardt K, Smith WK, Resler LM, Bader MY, Sala A, Kueppers LM, Broll G, Cairns DM, Holtmeier F-K, Wieser G (2019) Seedling survival at timberline is critical to conifer mountain forest elevation and extent. Front For Glob Change 2:9. https://doi.org/10.3389/ffgc.2019.00009

    Article  Google Scholar 

  • Bürzle B, Schickhoff U, Schickhoff U, Schwab N, Oldeland J, Müller M, Böhner J, Chaudhary RP, Scholten T, Dickoré WB (2017) Phytosociology and ecology of treeline ecotone vegetation in Rolwaling Himal. Nepal. Phytocoenologia 47:197–220. https://doi.org/10.1127/phyto/2017/0130

    Article  Google Scholar 

  • Bürzle B, Schickhoff U, Schwab N, Wernicke LM, Müller YK, Böhner J, Chaudhary RP, Scholten T, Oldeland J (2018) Seedling recruitment and facilitation dependence on safe site characteristics in a Himalayan treeline ecotone. Plant Ecol 219:115–132. https://doi.org/10.1007/s11258-017-0782-2

    Article  Google Scholar 

  • Case BS, Duncan RP (2014) A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography 37:838–851. https://doi.org/10.1111/ecog.00280

    Article  Google Scholar 

  • Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12:558–570. https://doi.org/10.1007/s11629-015-3454-5

    Article  Google Scholar 

  • Cox PA (1990) The larger Rhododendron species. Timber Press, Portland, OR, USA

    Google Scholar 

  • Cuevas JG (2000) Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J Ecol 88:840–855. https://doi.org/10.1046/j.1365-2745.2000.00497.x

    Article  Google Scholar 

  • De Lillis M, Matteucci G, Valentini R (2004) Carbon assimilation, nitrogen, and photochemical efficiency of different Himalayan tree species along an altitudinal gradient. Photosynthetica 42:597–605. https://doi.org/10.1007/S11099-005-0019-9

    Article  Google Scholar 

  • DeLuca T, Nilsson M-C, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214. https://doi.org/10.1007/s00442-002-1025-2

    Article  Google Scholar 

  • Dolezal J, Leheckova E, Sohar K, Dvorsky M, Kopecky M, Chlumska Z, Wild J, Altman J (2016) Annual and intra-annual growth dynamics of Myricaria elegans shrubs in arid Himalaya. Trees 30:761–773. https://doi.org/10.1007/s00468-015-1318-9

    Article  Google Scholar 

  • Doove LL, Van Buuren S, Dusseldorp E (2014) Recursive partitioning for missing data imputation in the presence of interaction effects. Comput Stat Data Anal 72:92–104. https://doi.org/10.1016/j.csda.2013.10.025

    Article  Google Scholar 

  • Drollinger S, Müller M, Kobl T, Schwab N, Böhner J, Schickhoff U, Scholten T (2017) Decreasing nutrient concentrations in soils and trees with increasing elevation across a treeline ecotone in Rolwaling Himal. Nepal J Mt Sci 14:843–858. https://doi.org/10.1007/s11629-016-4228-4

    Article  Google Scholar 

  • Duan K, Yao T, Thompson LG (2006) Response of monsoon precipitation in the Himalayas to global warming. J Geophys Res Atmos 111:D19110. https://doi.org/10.1029/2006JD007084

    Article  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92:241–252. https://doi.org/10.1111/j.0022-0477.2004.00872.x

    Article  Google Scholar 

  • Durak T, Żywiec M, Kapusta P, Holeksa J (2015) Impact of land use and climate changes on expansion of woody species on subalpine meadows in the Eastern Carpathians. For Ecol Manag 339:127–135. https://doi.org/10.1016/j.foreco.2014.12.014

    Article  Google Scholar 

  • Fan CQ, Yang GJ, Zhao W, Ding BY, Qin GW (1999) Phenolic components from Rhododendron latoucheae: part 5 in the series “Chemical studies on Ericaceae plants.” Chin Chem Lett 10:567–570

    Google Scholar 

  • Ferrarini A, Rossi G, Mondoni A, Orsenigo S (2014) Prediction of climate warming impacts on plant species could be more complex than expected. Evidence from a case study in the Himalaya. Ecol Complex 20:307–314. https://doi.org/10.1016/j.ecocom.2014.02.003

    Article  Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past 10:1277–1290. https://doi.org/10.5194/cp-10-1277-2014

    Article  Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Carrer M (2017) Site- and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia 41:44–56. https://doi.org/10.1016/j.dendro.2016.03.001

    Article  Google Scholar 

  • Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, New York, US

    Google Scholar 

  • Gerlitz L, Bechtel B, Böhner J, Bobrowski M, Bürzle B, Müller M, Scholten T, Schickhoff U, Schwab N, Weidinger J (2016) Analytic comparison of temperature lapse rates and precipitation gradients in a Himalayan treeline environment: implications for statistical downscaling. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, Glacier response, and vegetation dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland, pp 49–64

    Google Scholar 

  • Gerlitz L, Conrad O, Thomas A, Böhner J (2014) Warming patterns over the Tibetan plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58:235–246. https://doi.org/10.3354/cr01193

    Article  Google Scholar 

  • Graumlich LJ, Waggoner LA, Bunn AG (2005) Detecting global change at alpine treeline: coupling paleoecology with contemporary studies. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions: an overview of current knowledge. Springer, Dordrecht, The Netherlands, pp 501–508

    Google Scholar 

  • Greenwood S, Chen J-C, Chen C-T, Jump AS (2015) Temperature and sheltering determine patterns of seedling establishment in an advancing subtropical treeline. J Veg Sci 26:711–721. https://doi.org/10.1111/jvs.12269

    Article  Google Scholar 

  • Grierson AJC, Long DG (1984–2001) Flora of Bhutan. Including a record of plants from Sikkim, vol 1−3. Royal Botanic Garden, Edinburgh, United Kingdom

    Google Scholar 

  • Harsch MA, Bader MY (2011) Treeline form—a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20:582–596. https://doi.org/10.1111/j.1466-8238.2010.00622.x

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x

    Article  Google Scholar 

  • Hasson S, Gerlitz L, Schickhoff U, Scholten T, Böhner J (2016) Recent climate change over High Asia. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland, pp 29–48

    Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Elsevier/Academic Press, London, United Kingdom, pp 135–189

    Google Scholar 

  • Hegnauer R, Hegnauer R (1966) Dicotyledoneae: Daphniphyllaceae - Lythraceae. Birkhäuser, Basel, Switzerland

    Google Scholar 

  • Holtmeier F-K (2009) Mountain timberlines. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, United Kingdom and New York, USA

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Jain SK, Kumar V, Saharia M (2013) Analysis of rainfall and temperature trends in northeast India. Int J Climatol 33:968–978. https://doi.org/10.1002/joc.3483

    Article  Google Scholar 

  • Jones CC, del Moral R (2005) Effects of microsite conditions on seedling establishment on the foreland of Coleman Glacier, Washington. J Veg Sci 16:293–300. https://doi.org/10.1111/j.1654-1103.2005.tb02367.x

    Article  Google Scholar 

  • Karki R,  Hasson S, Gerlitz L, Schickhoff U, Scholten T, Böhner J (2017) Quantifying the added value of convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas. Earth Syst Dynam 8:507–528. https://doi.org/10.5194/esd-8-507-2017

  • Karki R, Talchabhadel R, Aalto J, Baidya SK (2016) New climatic classification of Nepal. Theor Appl Climatol 125:799–808. https://doi.org/10.1007/s00704-015-1549-0

    Article  Google Scholar 

  • KC A, Ghimire A (2015) High-altitude plants in era of climate change: a case of Nepal Himalayas. In: Öztürk M, Hakeem KR, Faridah-Hanum I, Efe R (eds) Climate change impacts on high-altitude ecosystems. Springer International Publishing, Cham, Switzerland, pp 177–187

    Google Scholar 

  • Kent M (2012) Vegetation description and data analysis: a practical approach, 2nd edn. Hoboken, NJ, Wiley-Blackwell, Chichester, West Sussex, UK

    Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin Heidelberg, Germany

    Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Basel, Switzerland

    Google Scholar 

  • Krishnan R, Shrestha AB, Ren G, Rajbhandari R, Saeed S, Sanjay J, Syed MdA, Vellore R, Xu Y, You Q, Ren Y (2019) Unravelling climate change in the Hindu Kush Himalaya: rapid warming in the mountains and increasing extremes. In: Wester P, Mishra A, Mukherji A, Shrestha AB (eds) The Hindu Kush Himalaya assessment: mountains, climate change, sustainability and people. Springer International Publishing, Cham, pp 57–97

    Google Scholar 

  • Kroiss SJ, Hille Ris Lambers J (2015) Recruitment limitation of long-lived conifers: implications for climate change responses. Ecology 96:1286–1297. https://doi.org/10.1890/14-0595.1

    Article  Google Scholar 

  • Kuhn M (2012) Rain and snow at high elevation. In: Lütz C (ed) Plants in alpine regions—cell physiology of adaption and survival strategies. Springer, Wien, Austria, pp 1–10

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, Berlin Heidelberg, Germany

    Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan plateau during recent decades. Int J Climatol 20:1729–1742. https://doi.org/10.1002/1097-0088(20001130)20:14%3c1729::AID-JOC556%3e3.0.CO;2-Y

    Article  Google Scholar 

  • Maher EL, Germino MJ (2006) Microsite differentiation among conifer species during seedling establishment at alpine treeline. Ecoscience 13:334–341

    Google Scholar 

  • Maithani K, Arunachalam A, Tripathi RS, Pandey HN (1998) Influence of leaf litter quality on N mineralization in soils of subtropical humid forest regrowths. Biol Fertil Soils 27:44–50. https://doi.org/10.1007/s003740050398

    Article  Google Scholar 

  • Marschner P, Rengel Z (2012) Nutrient avialability in soils. In: Marschner H, Marschner P (eds) Marschner’s mineral nutrition of higher plants. Elsevier/Academic Press, London, United Kingdom, pp 315–330

    Google Scholar 

  • Miehe G (1990) Langtang Himal: Flora und Vegetation als Klimazeiger und -zeugen im Himalaya. Cramer, Berlin

    Google Scholar 

  • Miehe G, Miehe S, Böhner J, Ghimire SK, Bhattarai K, Chaudhary RP, Subedi M, Jha PK, Pendry C (2015) Vegetation ecology. In: Miehe G, Pendry C, Chaudhary RP (eds) Nepal: an introduction to the natural history, ecology and human environment in the Himalayas. Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom, pp 385–472

    Google Scholar 

  • Mountain research initiative EDW working group (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  • Müller M, Schickhoff U, Scholten T, Drollinger S, Böhner J, Chaudhary RP (2016) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal. Nepal. Prog Phys Geogr 40:135–160. https://doi.org/10.1177/0309133315615802

    Article  Google Scholar 

  • Müller M, Schwab N, Schickhoff U, Böhner J, Scholten T (2016) Soil temperature and soil moisture patterns in a Himalayan alpine treeline ecotone. Arct Antarct Alp Res 48:501–521. https://doi.org/10.1657/AAAR0016-004

    Article  Google Scholar 

  • Müller M, Oelmann Y, Schickhoff U, Böhner J, Scholten T (2017) Himalayan treeline soil and foliar C:N: P stoichiometry indicate nutrient shortage with elevation. Geoderma 291:21–32. https://doi.org/10.1016/j.geoderma.2016.12.015

    Article  Google Scholar 

  • Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, Oxford

    Google Scholar 

  • Northup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229. https://doi.org/10.1038/377227a0

    Article  Google Scholar 

  • Nullet D, Juvik JO (1994) Generalised mountain evaporation profiles for tropical and subtropical latitudes. Singap J Trop Geogr 15:17–24. https://doi.org/10.1111/j.1467-9493.1994.tb00242.x

    Article  Google Scholar 

  • Padma Alekhya VVL, Pujar GS, Jha CS, Dadhwal VK (2015) Simulation of vegetation dynamics in Himalaya using dynamic global vegetation model. Trop Ecol 56:219–231

    Google Scholar 

  • Rana P, Bhuju DR, Koirala M, Boonchird C (2017) Dendroecological studies of Rhododendron campanulatum D. Don along the elevational gradient of Manaslu conservation area. Nepal Himalaya Pak J Bot 49:1749–1755

    Google Scholar 

  • Reasoner M, Tinner W (2009) Holocene treeline fluctuations. In: Gornitz V (ed) Encyclopedia of paleoclimatology and ancient environments. Springer Verlag, Heidelberg, pp 442–446

    Google Scholar 

  • Ristvey AG, Lea-Cox JD, Ross DS (2007) Nitrogen and phosphorus uptake efficiency and partitioning of container-grown azalea during spring growth. J Am Soc Hortic Sci 132:563–571

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptation to freezing stress. Springer, Berlin Heidelberg

    Google Scholar 

  • Salick J, Ghimire SK, Fang Z, Dema S, Konchar KM (2014) Himalayan alpine vegetation, climate change and mitigation. J Ethnobiol 34:276–293. https://doi.org/10.2993/0278-0771-34.3.276

    Article  Google Scholar 

  • Schickhoff U (2011) Dynamics of mountain ecosystems. In: Millington AC, Blumler MA, Schickhoff U (eds) The SAGE handbook of biogeography. SAGE, London, United Kingdom, pp 313–337

    Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll G, Keplin B (eds) Mountain ecosystems. Studies in Treeline Ecology, Springer, Berlin, Germany, pp 275–354

    Google Scholar 

  • Schickhoff U (1993) Das Kaghan-Tal im Westhimalaya (Pakistan). Bonner Geogr Abh 87. Dümmler, Bonn

    Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, Schwab N, Wedegärtner R (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265. https://doi.org/10.5194/esd-6-245-2015

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Lange J, Müller M, Scholten T, Schwab N (2016a) Climate change and treeline dynamics in the Himalaya. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland, pp 271–306. https://doi.org/10.1007/978-3-319-28977–9_15

    Google Scholar 

  • Schickhoff U, Singh RB, Mal S (2016) Climate change and dynamics of glaciers and vegetation in the Himalaya: an overview. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, Glacier response, and vegetation dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland, pp 1–26

    Google Scholar 

  • Schimel JP, Cleve KV, Cates RG, Clausen TP, Reichardt PB (1996) Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during succession. Can J Bot 74:84–90

    Google Scholar 

  • Schwab N (2018) Sensitivity and response of alpine treelines to climate change—insights from a Krummholz treeline in Rolwaling Himal, Nepal. PhD thesis, Universität Hamburg, Hamburg, Germany

    Google Scholar 

  • Schwab N, Janecka K, Kaczka RJ, Böhner J, Chaudhary RP, Scholten T, Schickhoff U (2020) Ecological relationships at a near-natural treeline, Rolwaling valley, Nepal Himalaya: implications for the sensitivity to climate change. Erdkunde 74:15–44. https://doi.org/10.3112/erdkunde.2020.01.02

    Article  Google Scholar 

  • Schwab N, Kaczka RJ, Janecka K, Böhner J, Chaudhary RP, Scholten T, Schickhoff U (2018) Climate change-induced shift of tree growth sensitivity at a central Himalayan treeline ecotone. Forests 9:267. https://doi.org/10.3390/f9050267

    Article  Google Scholar 

  • Schwab N, Schickhoff U, Bürzle B, Müller M, Böhner J, Chaudhary RP, Scholten T, Oldeland J (2017) Implications of tree species—environment relationships for the responsiveness of Himalayan krummholz treelines to climate change. J Mt Sci 14:453–473. https://doi.org/10.1007/s11629-016-4257-z

    Article  Google Scholar 

  • Schwab N, Schickhoff U, Müller M, Gerlitz L, Bürzle B, Böhner J, Chaudhary RP, Scholten T (2016) Treeline responsiveness to climate warming: insights from a krummholz treeline in Rolwaling Himal, Nepal. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, Glacier response, and vegetation dynamics in the Himalaya. Springer International Publishing, Cham, Switzerland, pp 307–345

    Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 7:e36741. https://doi.org/10.1371/journal.pone.0036741

    Article  Google Scholar 

  • Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23:1101–1112

    Google Scholar 

  • Souto XC, Chiapusio G, Pellissier F (2000) Relationships between phenolics and soil microorganisms in spruce forests: significance for natural regeneration. J Chem Ecol 26:2025–2034. https://doi.org/10.1023/A:1005504029243

    Article  Google Scholar 

  • Stevens GC, Fox JF (1991) The causes of treeline. Annu Rev Ecol Syst 22:177–191. https://doi.org/10.1146/annurev.es.22.110191.001141

    Article  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy AS (eds) (2015) Plant physiology and development. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8:e57103. https://doi.org/10.1371/journal.pone.0057103

    Article  Google Scholar 

  • Tiwari A, Fan Z-X, Jump AS, Li S-F, Zhou Z-K (2017) Gradual expansion of moisture sensitive Abies spectabilis forest in the trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia 41:34–43. https://doi.org/10.1016/j.dendro.2016.01.006

    Article  Google Scholar 

  • Tranquillini W (1982) Frost-drought and its ecological significance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II: water relations and carbon assimilation. Springer, Berlin, pp 379–400

    Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5:A3–A18. https://doi.org/10.2307/1550148

    Article  Google Scholar 

  • Van Buuren S (2012) Flexible imputation of missing data. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Wang S-Y, Yoon J-H, Gillies RR, Cho C (2013) What caused the winter drought in western Nepal during recent years? J Clim 26:8241–8256. https://doi.org/10.1175/JCLI-D-12-00800.1

    Article  Google Scholar 

  • Watson MF, Akiyama S, Ikeda H, Pendry CA, Rajbhandari KR, Shrestha KK (eds) (2011) Flora of Nepal: Magnoliaceae to Rosaceae. Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom

    Google Scholar 

  • Weidinger J, Gerlitz L, Bechtel B, Böhner J (2018) Statistical modelling of snow cover dynamics in the central Himalaya  region, Nepal. Clim Res 75:181–199. https://doi.org/10.3354/cr01518

  • Weiss DJ, Malanson GP, Walsh SJ (2015) Multiscale relationships between alpine treeline elevation and hypothesized environmental controls in the western United States. Ann Assoc Am Geogr 105:437–453. https://doi.org/10.1080/00045608.2015.1015096

    Article  Google Scholar 

  • Wieser G, Holtmeier F-K, Smith WK (2014) Treelines in a changing global environment. In: Tausz M, Grulke N (eds) Trees in a changing environment. Springer, Dordrecht, The Netherlands, pp 221–263

    Google Scholar 

  • Zhan Y-J, Ren G-Y, Shrestha AB, Rajbhandari R, Ren Y-Y, Sanjay J, Xu Y, Sun X-B, You Q-L, Wang S (2017) Changes in extreme precipitation events over the Hindu Kush Himalayan region during 1961–2012. Advan Clim Change Res 8:166–175. https://doi.org/10.1016/j.accre.2017.08.002

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Tenzing and Lakpa Sherpa from Beding who provided lodging and support during field data collection. We thank Ram Bahadur, Simon Drollinger, Helge Heyken, Nina Kiese, Yanina Katharina Müller, Hanna Wanli, Ronja Wedegärtner and Lina Marie Wernicke for assistance in the field. We are obliged to Lena Geiger and Matthias Tetzlaff for providing HemiView data and to Lars Gerlitz for providing climate data. We thank Michael Müller for providing and discussing soil data and the late Ramchandra Karki for discussions on climate data. We acknowledge Bijay Raj Subedi, Madan K. Suwal, Yadu Sapkota and Chandra Kanta Subedi for great support in logistics and administrative issues. B. Bürzle was funded by Studienstiftung des deutschen Volkes. We are indebted to the German Research Foundation for funding (DFG, SCHI 436/14-1, BO 1333/4-1, SCHO 739/14-1), to Nepalese authorities for research permits and to the community in Rolwaling for friendly cooperation and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Schwab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwab, N., Bürzle, B., Böhner, J., Chaudhary, R.P., Scholten, ., Schickhoff, U. (2022). Environmental Drivers of Species Composition and Tree Species Density of a Near-Natural Central Himalayan Treeline Ecotone: Consequences for the Response to Climate Change. In: Schickhoff, U., Singh, R., Mal, S. (eds) Mountain Landscapes in Transition . Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-70238-0_13

Download citation

Publish with us

Policies and ethics