Skip to main content
Log in

Improved Stability and Passivity Results for Discrete Time-Delayed Systems with Saturation Nonlinearities and External Disturbances

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study considers the stability and passivity analysis of discrete-time systems with variable time-lags, saturation overflow nonlinear effects and external disturbances. Summation inequality based on free-weighting matrices is employed to develop an enhanced stability criterion that is in the form of linear matrix inequalities. A sufficient passivity condition for discrete-delayed systems involving overflow nonlinearities and subjected to external interferences is also proposed. Illustrative examples are presented to demonstrate the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.K. Ahn, Strictly passive suppression of limit cycles in direct form digital filters with saturation nonlinearity: linear matrix inequality approach. Math. Methods in the Appl. Sci. 36(18), 2449–2455 (2013)

  2. C.K. Ahn, P. Shi, Generalized dissipativity analysis of digital filters with finite-wordlength arithmetic. IEEE Trans. Circuits Syst. II Express Briefs 63(4), 386–390 (2015)

  3. C.K. Ahn, P. Shi, Strict dissipativity and asymptotic stability of digital filters in direct form with saturation nonlinearity. Nonlinear Dyn. 85(1), 453–461 (2016)

    Article  MathSciNet  Google Scholar 

  4. S.X. Arockiaraj, P. Kokil, H. Kar, Passivity based stability condition for interefered digital filters, Indonesian Journal of Electrical Engineering and Computer. Science 6(2), 431–437 (2017)

    Google Scholar 

  5. K. Chakrabarty, S.S. Iyengar, H. Qi, E. Cho, Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. Comput. 51(12), 1448–1453 (2002)

    Article  MathSciNet  Google Scholar 

  6. J. Chen, L. Junwei, X. Shengyuan, Summation inequality and its application to stability analysis for time-delay systems. IET Control Theory & Appl. 10(4), 391–395 (2016)

    Article  MathSciNet  Google Scholar 

  7. A. Duminda, Dewasurendra, P.H. Bauer, A novel approach to grid sensor networks, Proceedings of 15th IEEE International Conference of Electronics, Circuits and Systems, IEEE, pp. 1191–1194 (2008)

  8. A.A. Abd-El-Latif, B. Abd-El-Atty, M. Amin, A.M. Iliyasu, Quantum-inspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications. Sci. Rep. 10(1), 1–16 (2020)

    Article  Google Scholar 

  9. Z. Feng, J. Lam, G.H. Yang, Optimal partitioning method for stability analysis of continuous/discrete delay systems. Int. J. Robust Nonlinear Control 25(4), 559–574 (2015)

    Article  MathSciNet  Google Scholar 

  10. J. Fredes, J. Novoa, S. King, R.M. Stern, N.B. Yoma, Locally normalized filter banks applied to deep neural-network-based robust speech recognition. IEEE Signal Process. Lett. 24(4), 377–381 (2017)

    Article  Google Scholar 

  11. H. Gao, T. Chen, New results on stability of discrete-time systems with time-varying state delay. IEEE Trans. Autom. Control 52(2), 328–334 (2007)

    Article  MathSciNet  Google Scholar 

  12. Y. He, W. Min, G.P. Liu, J.H. She, Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Trans. Autom. Control 53(10), 2372–2377 (2008)

    Article  MathSciNet  Google Scholar 

  13. Y. Hong, Y. Lian, A memristor-based continuous-time digital FIR filter for biomedical signal processing. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1392–1401 (2015)

    Article  MathSciNet  Google Scholar 

  14. V.K.R. Kandanvli, H. Kar, Robust stability of discrete-time state-delayed systems with saturation nonlinearities: Linear Matrix Inequality approach. Signal Process. 89(2), 161–173 (2009)

    Article  Google Scholar 

  15. V.K.R. Kandanvli, H. Kar, Delay-dependent stability criterion for discrete-time uncertain state-delayed systems employing saturation nonlinearities. Arab. J. Sci. Eng. 38(10), 2911–2920 (2013)

    Article  MathSciNet  Google Scholar 

  16. P. Kokil, C.G. Parthipan, Stability of digital filters subject to external interference and state-delay. Trans. Inst. Meas. Control. 42(13), 2559–2568 (2020)

    Article  Google Scholar 

  17. P. Kokil, C.G. Parthipan, S. Jogi, H. Kar, Criterion for realizing state-delayed digital filters subjected to external interference employing saturation arithmetic. Clust. Comput. 22(6), 15187–15194 (2019)

    Article  Google Scholar 

  18. M.K. Kumar, P. Kokil, H. Kar, Novel ISS criteria for digital filters using generalized overflow non-linearities and external interference. Trans. Inst. Meas. Control. 41(1), 156–164 (2019)

    Article  Google Scholar 

  19. O.M. Kwon, M.J. Park, J.H. Park, S.M. Lee, E.J. Cha, Improved robust stability criteria for uncertain discrete-time systems with interval time-varying delays via new zero equalities, IET Control Theory & Applications 6(16), 2567–2575 (2012)

  20. O.M. Kwon, M.J. Park, J.H. Park, S.M. Lee, E.J. Cha, Stability and stabilization for discrete-time systems with time-varying delays via augmented Lyapunov-Krasovskii functional, J. Franklin Institute 350(3), 521–540 (2013)

  21. J. Liu, J. Zhang, Note on stability of discrete-time time-varying delay systems. IET Control Theory & Appl. 6(2), 335–339 (2012)

    Article  MathSciNet  Google Scholar 

  22. R. Liu, X. Hongxiang, E. Zheng, Y. Jiang, Adaptive filtering for intelligent sensing speech based on multi-rate LMS algorithm. Clust. Comput. 20, 1493–1503 (2017)

    Article  Google Scholar 

  23. X.G. Liu, F.X. Wang, M.L. Tang, Auxiliary function-based summation inequalities and their applications to discrete-time systems. Automatica 78, 211–215 (2017)

    Article  MathSciNet  Google Scholar 

  24. J. Lofberg, YALMIP: A toolbox for modeling and optimization in MATLAB, Proceedings of Computer Aided Control Systems Design Conference, Taipei, Taiwan, pp. 284–289 (2004)

  25. M.S. Mahmoud, Stabilization of interconnected discrete systems with quantization and overflow nonlinearities. Circuits Syst. Signal Process. 32, 905–917 (2013)

    Article  MathSciNet  Google Scholar 

  26. T.J. Mary, R. Parthasarathy, Delay-dependent stability analysis of microgrid with constant and time-varying communication delays. Electric. Power Componen. Syst. 44(13), 1441–1452 (2016)

    Article  Google Scholar 

  27. X. Meng, J. Lam, D. Baozhu, H. Gao, A delay-partitioning approach to the stability analysis of discrete-time systems. Automatica 46(3), 610–614 (2010)

    Article  MathSciNet  Google Scholar 

  28. P. Naghshtabrizi, J.P. Hespanha, A.R. Teel, Stability of delay impulsive systems with application to networked control systems. Trans. Inst. Meas. Control. 32(5), 511–528 (2010)

  29. P.T. Nam, P.N. Pathirana, H. Trinh, Discrete Wirtinger-based inequality and its application, Journal of the Franklin Institute 352, 1893–1905 (2015)

  30. P.T. Nam, H. Trinh, P.N. Pathirana, Discrete inequalities based on multiple auxiliary functions and their applications to stability analysis of time-delay systems. J. Franklin Inst. 352(12), 5810–5831 (2015)

  31. R. Nigam, S.K. Tadepalli, Criterion to determine the stability of systems with finite wordlength and delays using Bessel-Legendre inequalities, Robotics, Control and Computer Vision. Lecture Notes in Electrical Engineering (Singapore), Springer Nature Singapore, pp. 271–281 (2023)

  32. V. Chandra Pal, R. Negi, Q. Zhu, Stabilization of discrete-time delayed systems in presence of actuator saturation based on Wirtinger inequality, Math. Problem. Eng. 2019 (2019)

  33. S. Pandey, B. Das, S.K. Tadepalli, Comments on “New finite-sum inequalities with applications to stability of discrete time-delay systems’’. Automatica 91, 320–321 (2018)

    Article  MathSciNet  Google Scholar 

  34. S. Pandey, S.K. Tadepalli, V.K.R. Kandanvli, H. Kar, Improved criterion for stability analysis of discrete-time systems subject to saturation nonlinearities and variable time-lags, Proceedings of 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), IEEE, pp. 1–5 (2019)

  35. P. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235–238 (2011)

    Article  MathSciNet  Google Scholar 

  36. C.G. Parthipan, X.S. Arockiaraj, P. Kokil, New passivity results for the realization of interfered digital filters utilizing saturation overflow nonlinearities. Trans. Inst. Meas. Control. 40(15), 4246–4252 (2018)

  37. C.G. Parthipan, P. Kokil, Stability of digital filters with state-delay and external interference. Circuits Syst. Signal Process. 40(8), 3866–3883 (2021)

    Article  Google Scholar 

  38. C.G. Parthipan, P. Kokil, Delay-dependent stability analysis of interfered digital filters with time-varying delay and saturation nonlinearities. Circuits Syst. Signal Process. 41(10), 5765–5784 (2022)

    Article  Google Scholar 

  39. C. Peng, Y.C. Tian, D. Yue, Output feedback control of discrete-time systems in networked environments. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 41(1), 185–190 (2010)

    Article  Google Scholar 

  40. S.B. Qiu, X.G. Liu, F.X. Wang, Q. Chen, Stability and passivity analysis of discrete-time linear systems with time-varying delay. Syst. Control Lett. 134, 104543 (2019)

    Article  MathSciNet  Google Scholar 

  41. A. Seuret, F. Gouaisbaut, E. Fridman, Stability of discrete-time systems with time-varying delays via a novel summation inequality. IEEE Trans. Autom. Control 60(10), 2740–2745 (2015)

    Article  MathSciNet  Google Scholar 

  42. T. Shen, Z. Yuan, X. Wang, Stability analysis for digital filters with multiple saturation nonlinearities. Automatica 48(10), 2717–2720 (2012)

    Article  MathSciNet  Google Scholar 

  43. K. Singh, P.K. Gupta, D. Chaurasia, V.K.R. Kandanvli, Stability of discrete-time delayed systems subject to external interference and generalized overflow nonlinearities, IEEE Transactions on Industry Applications 58(4), 5353–5364 (2022)

  44. K. Singh, V.K.R. Kandanvli, H. Kar, Limit cycle-free realization of discrete-time delayed systems with external interference and finite wordlength nonlinearities. Circuits Syst. Signal Process. 41(8), 4438–4454 (2022)

    Article  Google Scholar 

  45. J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimiz. Methods and Softw. 11(1–4), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  46. Z.T. Njitacke, J. Kengne, H.B. Fotsin, Coexistence of multiple stable states and bursting oscillations in a 4D Hopfield neural network. Circuits Syst. Signal Process. 39, 3424–3444 (2020)

    Article  Google Scholar 

  47. S.K. Tadepalli, V.K.R. Kandanvli, H. Kar, Stability criteria for uncertain discrete-time systems under the influence of saturation nonlinearities and time-varying delay, ISRN Applied Mathematics 2014 (2014)

  48. S.K. Tadepalli, V.K.R. Kandanvli, Improved stability results for uncertain discrete-time state-delayed systems in the presence of nonlinearities. Trans. Inst. Meas. Control. 38(1), 33–43 (2016)

    Article  Google Scholar 

  49. S.K. Tadepalli, V.K.R. Kandanvli, A. Vishwakarma, Criteria for stability of uncertain discrete-time systems with time-varying delays and finite wordlength nonlinearities. Trans. Inst. Meas. Control. 40(9), 2868–2880 (2018)

    Article  Google Scholar 

  50. S.K. Tadepalli, V.K.R. Kandanvli, Delay-dependent stability of discrete-time systems with multiple delays and nonlinearities. Int. J. Innov. Comput. Inf. Control 13(3), 891–904 (2017)

    Google Scholar 

  51. F.X. Wang, X.G. Liu, M.L. Tang, Y.J. Shu, Stability analysis of discrete-time systems with variable delays via some new summation inequalities. Adv. Difference Equ. 2016(1), 1–20 (2016)

    MathSciNet  Google Scholar 

  52. S. Wen, L. Xing, H. Xiaoqing, H. Zhang, Measurement-converted Kalman filter tracking with Gaussian intensity attenuation signal in wireless sensor networks. Int. J. Distrib. Sens. Netw. 13(4), 1550147717700896 (2017)

    Article  Google Scholar 

  53. Y. Xiao, Y.Y. Cao, Z. Lin, Robust filtering for discrete-time systems with saturation and its application to transmultiplexers. IEEE Trans. Signal Process. 52(5), 1266–1277 (2004)

    Article  MathSciNet  Google Scholar 

  54. Y. Junyan, Z. Deng, Y. Mei, Y. Gao, Design of multiple controllers for networked control systems with delays and packet losses. Trans. Inst. Meas. Control. 35(6), 720–729 (2013)

    Article  Google Scholar 

  55. C.K. Zhang, Y. He, L. Jiang, M. Wu, An improved summation inequality to discrete-time systems with time-varying delay, Automatica 74, 10–15 (2016)

  56. D. Zhang, Y. Li, Passivity analysis for discrete-time switched neural networks with various activation functions and mixed time delays. Nonlinear Dyn. 67(1), 403–411 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers and the Associate Editor for their constructive comments and suggestions for improving the quality of the manuscript.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchitra Pandey.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Proof of Theorem 1

Appendix. Proof of Theorem 1

Proof

Let us consider the LKF [6, 41, 55] as

$$\begin{aligned} V(\varvec{\chi }(\vartheta ))&= V_1(\varvec{\chi }(\vartheta )) + V_2(\varvec{\chi }(\vartheta )) + V_3(\varvec{\chi }(\vartheta )) + V_4(\varvec{\chi }(\vartheta )), \end{aligned}$$
(A.1)

where

$$\begin{aligned} V_1(\varvec{\chi }(\vartheta ))&= \varvec{\Gamma }^T(\vartheta ) {\varvec{P}} \varvec{\Gamma }(\vartheta ), \\ V_2(\varvec{\chi }(\vartheta ))&= \sum _{\beta =\vartheta -d_l}^{\vartheta -1} \varvec{\chi }^T(\beta ) \varvec{Q_1}\varvec{\chi }(\beta ) + \sum _{\beta =\vartheta -d_h}^{\vartheta -d_l-1} \varvec{\chi }^T(\beta ) \varvec{Q_2}\varvec{\chi }(\beta ), \\ V_3(\varvec{\chi }(\vartheta ))&= \sum _{\beta =-d_l}^{-1} \sum _{\gamma =\vartheta +\beta }^{\vartheta -1} \Delta \varvec{\chi }^T(\gamma ) \varvec{R_1} \Delta \varvec{\chi }(\gamma ) + \sum _{\beta =-d_h}^{-1-d_l} \sum _{\gamma =\vartheta +\beta }^{\vartheta -1} \Delta \varvec{\chi }^T(\gamma ) \varvec{R_2} \Delta \varvec{\chi }(\gamma ), \\ V_4(\varvec{\chi }(\vartheta ))&= \sum _{\beta =-d_h}^{-1-d_l} \sum _{\gamma =\vartheta +\beta }^{\vartheta -1} \varvec{\chi }^T(\gamma ) \varvec{R_3} \varvec{\chi }(\gamma ). \end{aligned}$$

Next, on calculating the finite difference of the above LKF along the trajectories of system (1) we have

$$\begin{aligned} \Delta V_1(\varvec{\chi }(\vartheta ))&= \begin{bmatrix} \varvec{\zeta }(\varvec{\psi }(\vartheta )) \\ \\ \sum _{\beta =\vartheta -d_l}^\vartheta \varvec{\chi }(\beta ) - \varvec{\chi }(\vartheta -d_l) \\ \\ \sum _{\beta =\vartheta -d_h}^{\vartheta -d_l} \varvec{\chi }(\beta ) - \varvec{\chi }(\vartheta -d_h) \end{bmatrix}^T {\varvec{P}} \begin{bmatrix} \varvec{\zeta }(\varvec{\psi }(\vartheta )) \\ \\ \sum _{\beta =\vartheta -d_l}^\vartheta \varvec{\chi }(\beta ) - \varvec{\chi }(\vartheta -d_l) \\ \\ \sum _{\beta =\vartheta -d_h}^{\vartheta -d_l} \varvec{\chi }(\beta ) - \varvec{\chi }(\vartheta -d_h) \end{bmatrix} \nonumber \\&\quad - \begin{bmatrix} \varvec{\chi }(\vartheta ) \\ \\ \sum _{\beta =\vartheta -d_l}^\vartheta \varvec{\chi }(\beta ) - \varvec{\chi }(\vartheta -d_l) \\ \\ \sum _{\beta =\vartheta -d_h}^{\vartheta -d_l} \varvec{\chi }(\beta ) - \varvec{\chi }(\vartheta -d_h) \end{bmatrix}^T {\varvec{P}} \begin{bmatrix} \varvec{\chi }(\vartheta ) \\ \\ \sum _{\beta =\vartheta -d_l}^\vartheta \varvec{\chi }(\beta ) - \varvec{\chi }(\vartheta -d_l) \\ \\ \sum _{\beta =\vartheta -d_h}^{\vartheta -d_l} \varvec{\chi }(\beta ) - \varvec{\chi }(\vartheta -d_h) \end{bmatrix}, \end{aligned}$$
(A.2)
$$\begin{aligned} \Delta V_2(\varvec{\chi }(\vartheta ))&=\varvec{\chi }^T(\vartheta ) \varvec{Q_1} \varvec{\chi }(\vartheta ) - \varvec{\chi }^T(\vartheta -d_l) \varvec{Q_1} \varvec{\chi }(\vartheta -d_l) + \varvec{\chi }^T(\vartheta -d_l) \varvec{Q_2} \varvec{\chi }(\vartheta -d_l) \nonumber \\&\quad - \varvec{\chi }^T(\vartheta -d_h) \varvec{Q_2} \varvec{\chi }(\vartheta -d_h), \end{aligned}$$
(A.3)
$$\begin{aligned} \Delta V_3(\varvec{\chi }(\vartheta ))&= d_l \Delta \varvec{\chi }^T(\vartheta ) \varvec{R_1} \Delta \varvec{\chi }(\vartheta ) - \sum _{\beta =\vartheta -d_l}^{\vartheta -1} \Delta \varvec{\chi }^T(\beta ) \varvec{R_1} \Delta \varvec{\chi }(\beta ) \nonumber \\&\quad + d_{lh} \Delta \varvec{\chi }^T(\vartheta ) \varvec{R_2} \Delta \varvec{\chi }(\vartheta ) - \sum _{\beta =\vartheta -d(\vartheta )}^{\vartheta -1-d_l} \Delta \varvec{\chi }^T(\beta ) \varvec{R_2} \Delta \varvec{\chi }(\beta ) \nonumber \\&\quad - \sum _{\beta =\vartheta -d_h}^{\vartheta -1-d(\vartheta )} \Delta \varvec{\chi }^T(\beta ) \varvec{R_2} \Delta \varvec{\chi }(\beta ), \end{aligned}$$
(A.4)
$$\begin{aligned} \Delta V_4(\varvec{\chi }(\vartheta ))&= d_{lh}\varvec{\chi }^T(\vartheta ) \varvec{R_3} \varvec{\chi }(\vartheta ) - \sum _{\beta =\vartheta -d(\vartheta )}^{\vartheta -1-d_l} \varvec{\chi }^T(\beta ) \varvec{R_3} \varvec{\chi }(\beta ) \nonumber \\&\quad - \sum _{\beta =\vartheta -d_h}^{\vartheta -1-d(\vartheta )} \varvec{\chi }^T(\beta ) \varvec{R_3} \varvec{\chi }(\beta ). \end{aligned}$$
(A.5)

Now, by employing Lemma 1 the summation terms in (A.4) can be expressed as

$$\begin{aligned} - \sum _{\beta =\vartheta -d_l}^{\vartheta -1} \Delta \varvec{\chi }^T(\beta ) \varvec{R_1} \Delta \varvec{\chi }(\beta )&\le \varvec{\xi }^T(\vartheta )[\varvec{\Lambda _1}\varvec{N_1}^T + \varvec{N_1} \varvec{\Lambda _1}^T + d_1 \varvec{N_1}\varvec{{\hat{R}}_1}^{-1} \varvec{N_1}^T] \varvec{\xi }(\vartheta ), \end{aligned}$$
(A.6)
$$\begin{aligned} - \sum _{\beta =\vartheta -d(\vartheta )}^{\vartheta -1-d_l} \Delta \varvec{\chi }^T(\beta ) \varvec{R_2} \Delta \varvec{\chi }(\beta )&\le \varvec{\xi }^T(\vartheta )[\varvec{\Lambda _2}\varvec{N_2}^T + \varvec{N_2} \varvec{\Lambda _2}^T \nonumber \\&\quad + (d(\vartheta )-d_l) \varvec{N_2}\varvec{{\hat{R}}_2}^{-1} \varvec{N_2}^T] \varvec{\xi }(\vartheta ), \end{aligned}$$
(A.7)

and

$$\begin{aligned} - \sum _{\beta =\vartheta -d_h}^{\vartheta -1-d(\vartheta )} \Delta \varvec{\chi }^T(\beta ) \varvec{R_2} \Delta \varvec{\chi }(\beta )&\le \varvec{\xi }^T(\vartheta )[\varvec{\Lambda _3}\varvec{N_3}^T + \varvec{N_3} \varvec{\Lambda _3}^T \nonumber \\&\quad + (d_h-d(\vartheta )) \varvec{N_3}\varvec{{\hat{R}}_2}^{-1} \varvec{N_3}^T] \varvec{\xi }(\vartheta ), \end{aligned}$$
(A.8)

On the same lines as above, the second and third sum terms of (A.5) can be estimated by making use of the last inequality in Remark 3 of [40] as follows:

$$\begin{aligned} - \sum _{\beta =\vartheta -d(\vartheta )}^{\vartheta -1-d_l} \varvec{\chi }^T(\beta ) \varvec{R_3} \varvec{\chi }(\beta )&\le \varvec{\xi }^T(\vartheta )[\varvec{\Lambda _4}\varvec{N_4}^T + \varvec{N_4} \varvec{\Lambda _4}^T \nonumber \\&\quad + (d(\vartheta )-d_l) \varvec{N_4}\varvec{{\hat{R}}_3}^{-1} \varvec{N_4}^T] \varvec{\xi }(\vartheta ), \end{aligned}$$
(A.9)

and

$$\begin{aligned} - \sum _{\beta =\vartheta -d_h}^{\vartheta -1-d(\vartheta )} \varvec{\chi }^T(\beta ) \varvec{R_3} \varvec{\chi }(\beta )&\le \varvec{\xi }^T(\vartheta )[\varvec{\Lambda _5}\varvec{N_5}^T + \varvec{N_5} \varvec{\Lambda _5}^T \nonumber \\&\quad + (d_h-d(\vartheta )) \varvec{N_5}\varvec{{\hat{R}}_3}^{-1} \varvec{N_5}^T] \varvec{\xi }(\vartheta ), \end{aligned}$$
(A.10)

Employing (A.2) to (A.10), we obtain the following inequality

$$\begin{aligned} \Delta V(\varvec{\chi }(\vartheta ))&\le \varvec{\xi }^T(\vartheta ) ( \varvec{\Omega _1} + \varvec{\Omega _2} + \varvec{\Omega _3}) \varvec{\xi }(\vartheta ) - \delta \end{aligned}$$
(A.11)

where

$$\begin{aligned} \delta&= 2[\varvec{\psi }^T(\vartheta ) {\varvec{M}} + \varvec{\chi }^T(\vartheta ) {\varvec{Q}} + \varvec{\zeta }^T(\varvec{\psi }(\vartheta )) {\varvec{N}}] [\varvec{\psi }(\vartheta ) - \varvec{\zeta }(\varvec{\psi }(\vartheta ))] \end{aligned}$$
(A.12)

In view of (4), the quantity ‘\(\delta \)’ given by (A.12) is non-negative [42]. Because of the non-negativeness of ‘\(\delta \)’, one can conclude from (A.11) that \(\Delta V(\varvec{\chi }(\vartheta )) < {\varvec{0}}\) if \((\varvec{\Omega _1} + \varvec{\Omega _2} + \varvec{\Omega _3})< {\varvec{0}}\). By Schur’s complement, \((\varvec{\Omega _1} + \varvec{\Omega _2} + \varvec{\Omega _3}) < {\varvec{0}}\) if and only if the inequalities (8) and (9) hold. Therefore, the conditions (8), (9) and (10) are the asymptotical stability conditions for the system characterised by (1)–(2). Hence, we reach the end of an improved stability condition with the above proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Tadepalli, S.K., Bhusnur, S. et al. Improved Stability and Passivity Results for Discrete Time-Delayed Systems with Saturation Nonlinearities and External Disturbances. Circuits Syst Signal Process 43, 103–123 (2024). https://doi.org/10.1007/s00034-023-02465-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02465-5

Keywords

Navigation