Skip to main content
Log in

Criterion for realizing state-delayed digital filters subjected to external interference employing saturation arithmetic

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The problem of exponential stability and the \({\user2{H}}_{\infty }\) performance criterion for externally disturbed state-delayed digital filter employing fixed point arithmetic in the existence of saturation arithmetic is highlighted in this paper. A limit-cycle free condition for a class of state-delayed digital filter in the existence of external disturbance and saturation arithmetic is brought out by employing Lyapunov function. The presented result ensures the exponential stability and scales down the consequences of external disturbances to the \({\user2{H}}_{\infty }\) performance index. A numerical example simulated using MATLAB linear matrix inequality control toolbox is provided to validate effectiveness of the achieved criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhang, Y., Zhang, L., Han, J., Ban, Z.: Distributed Gaussian mixture model-based particle filter method for chemical pollution source localization with sensor network. Clust. Comput. 20(4), 2905–2917 (2017)

    Google Scholar 

  2. Kanieski, J.M., Cardoso, R., Pinheiro, H., Gründling, H.A.: Kalman filter-based control system for power quality conditioning devices. IEEE Trans. Ind. Electron. 60(11), 5214–5227 (2013)

    Google Scholar 

  3. Chung, K., Oh, S.: Improvement of speech signal extraction method using detection filter of energy spectrum entropy. Clust. Comput. 18(2), 629–635 (2015)

    Google Scholar 

  4. Liu, R., Xu, H., Zheng, E., Jiang, Y.: Adaptive filtering for intelligent sensing speech based on multi-rate LMS algorithm. Clust. Comput. 20(2), 1493–1503 (2017)

    Google Scholar 

  5. Abid, M., et al.: Computationally efficient generic adaptive filter (CEGAF). Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1046-6

    Google Scholar 

  6. Bian, M., Wang, J., Liu, W., Qiu, K.: Robust and reliable estimation via recursive nonlinear dynamic data reconciliation based on cubature Kalman filter. Clust. Comput. 20(4), 2919–2929 (2017)

    Google Scholar 

  7. Baek, N., Kim, K.J.: An artifact detection scheme with CUDA-based image operations. Clust. Comput. 20(1), 749–755 (2017)

    MathSciNet  Google Scholar 

  8. Cho, W., Choi, E.: A basis of spatial big data analysis with map-matching system. Clust. Comput. 20(3), 2177–2192 (2017)

    Google Scholar 

  9. Xie, K., Yu, J., Lu, C.: A new canonical polyadic decomposition algorithm with improved stability and its applications to biomedical signal processing. Clust. Comput. 20(2), 1449–1455 (2017)

    Google Scholar 

  10. Kar, H., Singh, V.: Elimination of overflow oscillations in fixed-point state-space digital filters with saturation arithmetic: An LMI approach. IEEE Trans. Circuits Syst. II. Exp. Briefs. 51(1), 40–42 (2004)

    Google Scholar 

  11. Kokil, P., Arockiaraj, S.X.: An improved criterion for induced stability of fixed-point digital filters with saturation arithmetic. Indones. J. Electric. Eng. Comput. Sci. 4(1), 65–72 (2016)

    Google Scholar 

  12. Kokil, P., Shinde, S.S.: Asymptotic stability of fixed-point state-space digital filters with saturation arithmetic and external disturbance: an IOSS approach. Circuits Syst. Signal Process. 34(12), 3965–3977 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Kokil, P., Kar, H.: An improved criterion for the global asymptotic stability of fixed-point state-space digital filters with saturation arithmetic. Digit. Signal Process. 22(6), 1063–1067 (2012)

    MathSciNet  Google Scholar 

  14. Amjad, M.U., et al.: Stability analysis of nonlinear digital systems under hardware overflow constraint for dealing with finite word-length effects of digital technologies. Signal Process. 140, 139–148 (2017)

    Google Scholar 

  15. Ji, X., Liu, T., Sun, Y., Su, H.: Stability analysis and controller synthesis for discrete linear time-delay systems with state saturation nonlinearities. Int. J. Syst. Sci. 42(3), 397–406 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Kandanvli, V.K.R., Kar, H.: Robust stability of discrete-time state-delayed systems with saturation nonlinearities: linear matrix inequality approach. Signal Process. 89(2), 161–173 (2009)

    MATH  Google Scholar 

  17. Kandanvli, V.K.R., Kar, H.: Delay-dependent stability criterion for discrete-time uncertain state-delayed systems employing saturation nonlinearities. Arab. J. Sci. Eng. 38(10), 2911–2920 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Chen, S.F.: Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities. Chaos Solitons Fractals 42(2), 1251–1257 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Tadepalli, S.K., Kandanvli, V.K.R., Kar, H.: Stability criteria for uncertain discrete-time systems under the influence of saturation nonlinearities and time-varying delay. ISRN Appl. Math. Article ID 861759, 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Knowles, J.B., Edwards, R.: Effects of a finite-word-length computer in a sampled-data feedback system. Proc. Inst. Electric. Eng. 112(6), 1197–1207 (1965)

    Google Scholar 

  21. Liu, B.: Effect of finite word length on the accuracy of digital filters-a review. IEEE Trans. Circuit Theory 18(6), 670–676 (1971)

    Google Scholar 

  22. Claasen, T.A.C.M., Mecklenbräuker, W.F.G., Peek, J.B.H.: Effects of quantization and overflow in recursive digital filters. IEEE Trans. Acoust. Speech Signal Process. 24(3), 517–529 (1976)

    MathSciNet  Google Scholar 

  23. Butterweck, H.J., Ritzerfeld, J.H.F., Werter, M.J.: Finite wordlength effects in digital filters-a review. EUT Report 88-E-205. Eindhoven University of Technology, Eindhoven, The Netherlands (1988)

  24. Sandberg, I.: The zero-input response of digital filters using saturation arithmetic. IEEE Trans. Circuits Syst. 26(11), 911–915 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Bose, T., Chen, M.Q.: Overflow oscillations in state-space digital filters. IEEE Trans. Circuits Syst. 38(8), 807–810 (1991)

    Google Scholar 

  26. Liu, D., Michel, A.N.: Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters. IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 39(10), 789–807 (1992)

    Google Scholar 

  27. Ahn, C.K.: Criterion for the elimination of overflow oscillations in fixed-point digital filters with saturation arithmetic and external disturbance. AEU-Int. J. Electron. Commun. 65(9), 750–752 (2011)

    Google Scholar 

  28. Kokil, P., Kandanvli, V.K.R., Kar, H.: A note on the criterion for the elimination of overflow oscillations in fixed-point digital filters with saturation arithmetic and external disturbance. AEU-Int. J. Electron. Commun. 66(9), 780–783 (2012)

    Google Scholar 

  29. Kokil, P., Arockiaraj, S.X., Kar, H.: Criterion for limit cycle-free state-space digital filters with external disturbances and generalized overflow nonlinearities. Trans. Inst. Meas. Control. 40(4), 1158–1166 (2018)

    Google Scholar 

  30. Bhargava, B.: A study of communication delays for web transactions. Clust. Comput. 4(4), 319–333 (2001)

    Google Scholar 

  31. Liu, L., Hu, B., Li, L.: Algorithms for energy efficient mobile object tracking in wireless sensor networks. Clust. Comput. 13(2), 181–197 (2010)

    Google Scholar 

  32. Meng, X., Lam, J., Du, B., Gao, H.: A delay-partitioning approach to the stability analysis of discrete-time systems. Automatica 46(3), 610–614 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, Z., et al.: Finite-time \({\user2{H}}_{\infty }\) filtering for T-S fuzzy discrete-time systems with time-varying delay and norm-bounded uncertainties. IEEE Trans. Fuzzy Syst. 23(6), 2427–2434 (2015)

  34. Liu, Y., Guo, B., Park, J.H.: Non-fragile \({\user2{H}}_{\infty }\) filtering for delayed Takagi–Sugeno fuzzy systems with randomly occurring gain variations. Fuzzy Sets Syst. 316, 99–116 (2017)

  35. Zhang, X., Han, Q.: Network-based \({\user2{H}}_{\infty }\) filtering for discrete-time systems. IEEE Trans. Signal Process. 60(2), 956–961 (2012)

  36. Zhang, H., et al.: Event-based distributed \({\user2{H}}_{\infty }\) filtering networks of 2-DOF quarter-car suspension systems. IEEE Trans. Ind. Inf. 13(1), 312–321 (2017)

  37. Wang, H., Xue, A., Wang, J., Lu, R.: Event-based \({\user2{H}}_{\infty }\) filtering for discrete-time Markov jump systems with network-induced delay. J. Franklin Inst. 354(14), 6170–6189 (2017)

  38. Azimi, M.M.: Robust \({\user2{H}}_{\infty }\) filtering and controller design for linear stochastic systems. Majlesi J. Mechatron. Syst. 5(4), 9–15 (2016)

  39. Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Wellesley (1986)

    MATH  Google Scholar 

  40. Singh, V.: A new realizability condition for limit cycle-free state-space digital filters employing saturation arithmetic. IEEE Trans. Circuits Syst. 32(10), 1070–1071 (1985)

    Google Scholar 

  41. Lee, J.: Constructive and discrete versions of the Lyapunov’s stability theorem and the LaSalle’s invariance theorem. Commun. Korean Math. Soc. 17(1), 155–163 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. The Math Works Inc., Natick, MA (1995)

    Google Scholar 

  43. Boyd, S., Ghaoui, E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA (1994)

    MATH  Google Scholar 

  44. Kokil, P., Kar, H., Kandanvli, V.K.R.: Stability analysis of discrete-time state-delayed systems with saturation nonlinearities. In: Proceedings of the International Conference on Computational Intelligence Computing Research, Kanyakumari, India (2011)

    Google Scholar 

  45. Bors, D., Walczak, S.: Application of 2D systems to investigation of a process of gas filtration. Multidimens. Syst. Signal Process. 23(1), 119–130 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Dymkov, M., Dymkou, S.: Repetitive and 2-D systems theory approach for modeling in gas networks. In: Proc. of Int. Conf. Problems Cybern. Inform., Baku, Azerbaijan (2012)

  47. Sumanasena, B., Bauer, P.H.: Realization using the Roesser model for implementations in distributed grid sensor networks. In: Proc. Int. Conf. Decision Control, Atlanta, GA, USA (2010)

  48. Leonor, N.R., et al.: A 2D ray-tracing based model for micro- and millimeter-wave propagation through vegetation. IEEE Trans. Antennas Propag. 62(12), 6443–6453 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Cao, M., Vorobyov, S.A., Hassanien, A.: Transmit array interpolation for DOA estimation via tensor decomposition in 2-D MIMO Radar. IEEE Trans. Signal Process. 65(19), 5225–5239 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Fornasini, E.: A 2-D systems approach to river pollution modeling. Multidimens. Syst. Signal Process. 2(3), 233–265 (1991)

    MathSciNet  MATH  Google Scholar 

  51. Stoorvogel, A.A.: The Control Problem: A State-Space Approach. Prentice Hall, Englewood Cliffs (1992)

Download references

Acknowledgement

The work of P. Kokil was supported in part by the Science and Engineering Research Board, Department of Science and Technology under Grant EEQ/2016/000803. The authors wish to thank the Editor and the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Kokil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokil, P., Parthipan, C.G., Jogi, S. et al. Criterion for realizing state-delayed digital filters subjected to external interference employing saturation arithmetic. Cluster Comput 22 (Suppl 6), 15187–15194 (2019). https://doi.org/10.1007/s10586-018-2530-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2530-3

Keywords

Navigation