Skip to main content
Log in

Approximation of Fractional-Order Systems Using Balanced Truncation with Assured Steady-State Gain

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This research presents a novel and stable approach for reducing the order of fractional-order systems using the advantage of a balanced truncation method and gain adjustment factor. The method can be applied to both commensurate and non-commensurate fractional systems. First, the fractional-order system is turned into an integer-order system using the Oustaloup approximation for non-commensurate systems and a simple mathematical replacement for commensurate systems. Then, balanced truncation is used to create a lower-order model. A gain factor is added to the reduced model to improve its accuracy in the steady state without changing how it works in the dynamic condition. This proposed method differs from other balanced truncation-based reduction methods that enhance steady-state response by using time moments, Pade equations, and Routh tables. These extra steps are optional with this method. The proposed strategy makes the step and Bode responses of the reduced systems more like Oustaloup’s approximate higher-order model. The method’s effectiveness is evaluated using various performance metrics such as integral square error, root mean square error, and H norm, as well as time response characteristics. Finally, inverse substitution converts the reduced integer-order model back to a commensurate fractional system. All simulations for the examples discussed in the study were conducted in MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A.B.H. Adamou-Mitiche, L. Mitiche, Multivariable systems model reduction based on the dominant modes and Genetic algorithm. IEEE Trans. Ind. Electron. 64(2), 1617–1619 (2017)

    Article  Google Scholar 

  2. A.C. Antoulas, Approximation of large-scale dynamical systems (SIAM, Philadelphia, 2005)

    Book  MATH  Google Scholar 

  3. Z. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43(1), 9–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Biradar, Y.V. Hote, S. Saxena, Reduced-order modeling of linear time-invariant systems using big bang big crunch optimization and time moment matching method. Appl. Math. Model. 40(15–16), 7225–7244 (2016). https://doi.org/10.1016/j.apm.2016.03.006

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Bourouba, S. Ladaci, A. Chaabi, Reduced-order model approximation of fractional-order systems using differential evolution algorithm. J. Control Autom. Electr. Syst. 29(1), 32–43 (2018)

    Article  Google Scholar 

  6. R. Caponetto, J.T. Machado, E. Murgano, M.G. Xibilia, Model order reduction: a comparison between integer and non-integer order systems approaches. Entropy 21(9), 876 (2019)

    Article  MathSciNet  Google Scholar 

  7. A. Charef, H.H. Sun, Y.Y. Tsao, B. Onaral, Fractal system as represented by singularity function. IEEE Trans. Autom. Control. 37(9), 1465–1470 (1992). https://doi.org/10.1109/9.159595

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Chena, B. Basua, D. McCabe, Fractional order models for system identification of thermal dynamics of buildings. Energy Build 133, 381–388 (2016)

    Article  Google Scholar 

  9. Y.Q. Chen, I. Petráš, D. Xue, Fractional order control—a tutorial, in Proceedings of ACC'09, American Control Conference (2009), pp. 1397–1411

  10. P. Chen, C.H. Schwab, Model order reduction methods in computational uncertainty quantification, in Handbook of Uncertainty Quantification (Springer, 2017), pp. 936–990

  11. J. Chen, A. Tepljakov, E. Petlenkov, Y.Q. Chen, B. Zhuang, Boundary Mittag–Leffler stabilization of coupled time fractional order reaction–advection–diffusion systems with non-constant coefficients. Syst. Control Lett. 149, 104875 (2021). https://doi.org/10.1016/j.sysconle.2021.104875

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Desai, R. Prasad, A novel order diminution of LTI systems using big bang big crunch optimization and Routh approximation. Appl. Math. Model. 37, 8016–8028 (2013). https://doi.org/10.1016/j.apm.2013.02.052

    Article  MathSciNet  MATH  Google Scholar 

  13. B.B. Duddeti, Multivariable system reduction using stability equation method and SRAM. World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Sci. 11(6), 242–246 (2017)

    Google Scholar 

  14. B.B. Duddeti, Order reduction of large-scale linear dynamic systems using balanced truncation with modified Cauer continued fraction. IETE J. Educ (2023). https://doi.org/10.1080/09747338.2023.2178530

    Article  Google Scholar 

  15. B.B. Duddeti, A.K. Naskar, K.R. Subhashini, Order reduction of LTI systems using balanced truncation and particle swarm optimization algorithm. Circuits Syst. Signal Process. (2023). https://doi.org/10.1007/s00034-023-02304-7

    Article  Google Scholar 

  16. L. Fortuna, G. Nunnari, A. Gallo, Model Order Reduction Techniques with Applications in Electrical Engineering (Springer, Berlin, 2012)

    Google Scholar 

  17. S. Ganguli, G. Kaur, P. Sarkar, Global heuristic methods for reduced order modelling of fractional order systems in the delta domain: a unified approach. Ric. Mat. (2021). https://doi.org/10.1007/s11587-021-00644-7

    Article  Google Scholar 

  18. Z. Gao, Stable model order reduction method for fractional-order systems based on unsymmetric Lanczos algorithm. IEEE/CAA J. Autom. Sin. 6(2), 485–492 (2019)

    Article  MathSciNet  Google Scholar 

  19. S. Gugercin, A. Antoulas, A survey of model reduction by balanced truncation and some new results. Int. J. Control. 77(8), 748–766 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. R.K. Gautam, N. Singh, N.K. Choudhary, A. Narain, Model order reduction using factor division algorithm and fuzzy c-means clustering technique. Trans. Inst. Meas. Control. 41(2), 468–475 (2019)

    Article  Google Scholar 

  21. C. Huang, K. Zhang, X. Dai, W. Tang, A modified balanced truncation method and its application to model reduction of power system, in Proceedings of the 2013 IEEE Power and Energy Society General Meeting (Vancouver, 21–25 July. IEEE, New York, 2013), pp. 1–5

  22. S. Jain, Y.V. Hote, Order diminution of LTI systems using modified big bang big crunch algorithm and Pade approximation with fractional order controller design. Int. J. Control Autom. Syst. 19(4), 2105–2121 (2021)

    Article  Google Scholar 

  23. S. Jain, Y.V. Hote, Reduced order approximation of incommensurate fractional order systems, in 2019 IEEE Conference on Control Technology and Applications (CCTA) (2019), pp. 1056–1061

  24. S. Jain, Y.V. Hote, S. Saxena, Model order reduction of commensurate fractional-order systems using a big bang–big crunch algorithm. IETE Tech. Rev. 37(5), 453–464 (2020)

    Article  Google Scholar 

  25. Y.L. Jiang, Z.H. Xiao, Arnoldi-based model reduction for fractional order linear systems. Int. J. Syst. Sci. 46(8), 1411–1420 (2015)

    MathSciNet  MATH  Google Scholar 

  26. M. Juneja, S.K. Nagar, S.R. Mohanty, PSO Based reduced order modelling of autonomous AC microgrid considering state perturbation. J. Control Meas. Electron. Comput. Commun. 61(1), 66–78 (2020). https://doi.org/10.1080/00051144.2019.1682867

    Article  Google Scholar 

  27. S. Kamal, R.K. Sharma, T.N. Dinh, B. Bandyopadhyay, Sliding mode control of uncertain fractional-order systems: a reaching phase free approach. Asian J. Control (2019). https://doi.org/10.1002/asjc.2223

    Article  Google Scholar 

  28. M. Khanra, J. Pal, K. Biswas, Reduced order approximation of MIMO fractional order systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 451–458 (2013)

    Article  Google Scholar 

  29. W. Krajewski, U. Viaro, A method for the integer-order approximation of fractional-order systems. J. Franklin Inst. 351(1), 555–564 (2014)

    Article  MATH  Google Scholar 

  30. C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications, series. Advances in Industrial Control (Springer, 2010)

  31. B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control. 26(1), 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Mouhou, A. Badri, Low integer-order approximation of fractional-order systems using grey wolf optimizer-based cuckoo search algorithm. Circuits Syst. Signal Process. 41, 1869–1894 (2002)

    Article  Google Scholar 

  33. A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency-band complex non-integer differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  34. I. Podlubny, Fractional Differential Equations (Academic Press, Orlando, 1999)

    MATH  Google Scholar 

  35. A.K. Prajapati, R. Prasad, Model order reduction by using the balanced truncation and factor division methods. IETE J. Res. 65(6), 827–842 (2018)

    Article  Google Scholar 

  36. A.K. Prajapati, R. Prasad, Order reduction in linear dynamical systems by using improved balanced realization technique. Circuits Syst. Signal Process. 38, 5289–5303 (2019). https://doi.org/10.1007/s00034-019-01109-x

    Article  Google Scholar 

  37. A.K. Prajapati, R. Prasad, Model reduction using the balanced truncation method and the Pade’ approximation method. IETE Tech. Rev. 39(2), 257–269 (2022). https://doi.org/10.1080/02564602.2020.1842257

    Article  Google Scholar 

  38. A.K. Prajapati, S. Mamidala, S. Ravada, C. Mutta, System reduction using continued fraction method to allow retention of dominant modes, in 13th Asian Control Conference (ASCC), pp. 203–208. https://doi.org/10.23919/ASCC56756.2022.9828075

  39. A.K. Prajapati, R. Prasad, Reduced-order modelling of LTI systems by using Routh approximation and factor division methods. Circuits Syst. Signal Process. 38, 3340–3355 (2019)

    Article  Google Scholar 

  40. A.K. Prajapati, R. Prasad, A new model reduction technique for the design of controller by using moment matching algorithm. IETE. Tech. Rev. 39(6), 1419–1440 (2022)

    Article  Google Scholar 

  41. M. Rachid, B. Maamar, D. Said, Comparison between two approximation methods of state space fractional systems. Signal Process. 91(3), 461–469 (2011)

    Article  MATH  Google Scholar 

  42. M. Rydel, R. Stanisławski, K.J. Latawiec, M. Gałek, Model order reduction of commensurate linear discrete-time fractional-order systems. IFAC-Papers on Line 51(1), 536–541 (2018)

    Article  MATH  Google Scholar 

  43. M.G. Safonov, R.Y. Chiang, D.J.N. Limebeer, Optimal Hankel model reduction for non-minimal systems. IEEE Trans. Autom. Control 35(4), 496–502 (1990)

    Article  MATH  Google Scholar 

  44. P. Sarkar, R.R. Shekh, A. Iqbal, A unified approach for reduced order modeling of fractional order system in delta domain, in International Automatic Control Conference (CACS) (2016), pp. 257–262

  45. S. Saxena, Y.V. Hote, P.P. Arya, Reduced-order modeling of commensurate fractional-order systems, in 14th International Conference on Control, Automation, Robotics and Vision (ICARCV) (2016), pp. 1–6

  46. A.H. Shirde, J.M. Boling, H.T. Toivonen, Output error identification in the presence of structural disturbances, in 18th International Conference on Control, Automation and Systems (ICCAS 2018) (2018)

  47. D.K. Sambariya, G. Arvind, High order diminution of LTI system using stability equation method. Br. J. Math. Comput. Sci. 13(5), 1–15 (2016)

    Google Scholar 

  48. J. Singh, C.B. Vishwakarma, K. Chattterjee, Biased reduction method by combining improved modified pole clustering and improved Pade approximations. Appl. Math. Model. 40, 1418–1426 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Soll, R. Pulch, Sample selection based on sensitivity analysis in parameterized model order reduction. J. Comput. Appl. Math. 316, 271–286 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. H.N. Soloklo, N. Bigdeli, Direct approximation of fractional order systems as a reduced integer/fractional-order model by genetic algorithm. Sadhana 45, 277 (2020)

    Article  MathSciNet  Google Scholar 

  51. R. Stanisławski, M. Rydel, K.J. Latawiec, Modeling of discrete-time fractional-order state space systems using the balanced truncation method. J. Franklin Inst. 354(7), 3008–3020 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. R. Stanisławski, M. Rydel, Z. Li, A new reduced-order implementation of discrete-time fractional-order PID controller. IEEE Access 10, 17417–17429 (2022). https://doi.org/10.1109/ACCESS.2022.3150883

    Article  Google Scholar 

  53. V. Stojanovic, V. Filipovic, Adaptive input design for identification of output error model with constrained output. Circuits Syst. Signal Process. 33, 97–113 (2014). https://doi.org/10.1007/s00034-013-9633-0

    Article  MathSciNet  Google Scholar 

  54. V. Stojanovic, N. Nedic, D. Prsic, L. Dubonjic, Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise. Appl. Math. Model. 40, 6676–6689 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. V. Sreeram, P. Agathoklis, Model reduction using balanced realizations with improved low frequency behaviour. Syst. Control Lett. 12, 33–38 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  56. S.K. Suman, A. Kumar, Linear system of order reduction using a modified balanced truncation method. Circuits Syst. Signal Process. 40, 2741–2762 (2021). https://doi.org/10.1007/s00034-020-01596-3

    Article  MATH  Google Scholar 

  57. M. Tavakoli-Kakhki, M. Haeri, Model reduction in commensurate fractional-order linear systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223(4), 493–505 (2009)

    Google Scholar 

  58. A. Tepljakov, Fractional-Order Modelling and Control of Dynamic Systems (Springer, Switzerland, 2017)

    Book  MATH  Google Scholar 

  59. A. Tepljakov, P. Eduard, J. Belikov, FOMCON: a MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2(2), 51–62 (2011)

    Google Scholar 

  60. M. Zheng, P. Li, Q. Liu, H. Lin, Design of PIλ-PDμ controller for high-order systems based on model order reduction using BB-BC and time moment matching. Trans. Inst. Meas. Control. (2023). https://doi.org/10.1177/01423312221127742

    Article  Google Scholar 

  61. C.J. Zuñiga Aguilar, J.F. Gómez-Aguilar, V.M. Alvarado-Martínez, H.M. Romero-Ugaldec, Fractional order neural networks for system identification. Chaos Solitons Fractals 130, 109444 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Bhaskar Duddeti.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duddeti, B.B. Approximation of Fractional-Order Systems Using Balanced Truncation with Assured Steady-State Gain. Circuits Syst Signal Process 42, 5893–5923 (2023). https://doi.org/10.1007/s00034-023-02393-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02393-4

Keywords

Navigation