Skip to main content
Log in

A Powerful Zero-Watermarking Algorithm for Copyright Protection of Color Images Based on Quaternion Radial Fractional Hahn Moments and Artificial Bee Colony Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new zero-watermarking algorithm for copyright protection of color image based on a new type of fractional-order quaternion moments called quaternion radial fractional Hahn moments (QRFrHMs), the artificial bee colony (ABC) algorithm, and a chaotic system that uses a mixed linear–nonlinear coupling based on two-dimensional CML (2DCML). The proposed QRFrHMs are defined by the projection of the color image on an orthogonal basis formed by a quaternion circular function and the fractional version of discrete orthogonal Hahn polynomials which depends on an additional fractional parameter \(\alpha \in {\mathbb{R}}\). The proposed zero-watermarking algorithm computes the QRFrHMs of the original image and then uses the ABC algorithm to choose the optimal parameters of the QRFrHMs. After that, the QRFrHMs with optimal parameters are used to construct a feature image called zero-watermark. The zero-watermark is used later to verify the copyright of the protected color image in a blind way. The combination of QRFrHMs and ABC algorithm gives the proposed zero-watermarking algorithm a high robustness with a bit error rate (BER) less than 0.03 for various attacks. In addition, the proposed zero-watermarking algorithm uses the chaotic 2DCML system to improve the security requirement so that only authorized persons can verify the copyright of the protected color image. The experimental results indicate the superiority of the proposed zero-watermarking algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

QRFrHMs:

Quaternion radial fractional Hahn moments

QRHMs:

Quaternion radial Hahn moments

RFrHMs:

Radial fractional Hahn moments

FrHPs:

Fractional Hahn polynomials

HPs:

Hahn polynomials.

ABC:

Artificial bee colony

MSE:

Mean squared error

RE:

Relative error

BER:

Bit error rate

References

  1. S. Aslan, D. Karaboga, A genetic Artificial Bee Colony algorithm for signal reconstruction based big data optimization. Appl. Soft Comput. 88, 106053 (2020)

    Google Scholar 

  2. R. Benouini et al., Fractional-order orthogonal Chebyshev Moments and Moment Invariants for image representation and pattern recognition. Pattern Recogn. 86, 332–343 (2019)

    Google Scholar 

  3. T.J. Bin et al., Subpixel edge location based on orthogonal Fourier–Mellin moments. Image Vis. Comput. 26(4), 563–569 (2008)

    Google Scholar 

  4. B.J. Chen et al., Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal Process. 92(2), 308–318 (2012)

    Google Scholar 

  5. A. Daoui et al., Biomedical multimedia encryption by fractional-order Meixner polynomials map and quaternion fractional-order Meixner moments. IEEE Access 10, 102599–102617 (2022)

    Google Scholar 

  6. A. Daoui et al., Efficient image encryption scheme using novel 1D multiparametric dynamical tent map and parallel computing. Mathematics 11(7), 1589 (2023)

    Google Scholar 

  7. A. Daoui et al., On computational aspects of high-order dual Hahn moments. Pattern Recognit. 127, 108596 (2022). https://doi.org/10.1016/j.patcog.2022.108596

    Article  Google Scholar 

  8. L.-Q. Guo, M. Zhu, Quaternion Fourier–Mellin moments for color images. Pattern Recognit. 44(2), 187–195 (2011)

    MathSciNet  MATH  Google Scholar 

  9. K.M. Hosny, M.M. Darwish, Resilient color image watermarking using accurate quaternion radial substituted Chebyshev moments. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 15(2), 1–25 (2019)

    Google Scholar 

  10. X. Kang et al., Combining polar harmonic transforms and 2D compound chaotic map for distinguishable and robust color image zero-watermarking algorithm. J. Vis. Commun. Image Represent. 70, 102804 (2020)

    Google Scholar 

  11. D. Karaboga, An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

  12. E.G. Karakasis et al., A unified methodology for computing accurate quaternion color moments and moment invariants. IEEE Trans. Image Process. 23(2), 596–611 (2013)

    MathSciNet  MATH  Google Scholar 

  13. A. Khotanzad, Y.H. Hong, Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)

    Google Scholar 

  14. R. Koekoek et al., Hypergeometric Orthogonal Polynomials and Their q-Analogues (Springer, 2010)

    MATH  Google Scholar 

  15. Y.N. Li, Quaternion polar harmonic transforms for color images. IEEE Signal Process. Lett. 20(8), 803–806 (2013). https://doi.org/10.1109/LSP.2013.2267775

    Article  Google Scholar 

  16. X. Liu et al., Fractional Krawtchouk transform with an application to image watermarking. IEEE Trans. Signal Process. 65(7), 1894–1908 (2017)

    MathSciNet  MATH  Google Scholar 

  17. L.-M. Luo et al., A modified moment-based edge operator for rectangular pixel image. IEEE Trans. Circuits Syst. Video Technol. 4(6), 552–554 (1994)

    Google Scholar 

  18. J.V. Marcos, G. Cristóbal, Texture classification using discrete Tchebichef moments. JOSA A. 30(8), 1580–1591 (2013)

    Google Scholar 

  19. Hu. Ming-Kuei, Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962). https://doi.org/10.1109/TIT.1962.1057692

    Article  MATH  Google Scholar 

  20. J. Mostafaee et al., Complex dynamical behaviors of a novel exponential hyper–chaotic system and its application in fast synchronization and color image encryption. Sci. Prog. 104(1), 0036 (2021)

    Google Scholar 

  21. R. Mukundan et al., Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    MathSciNet  MATH  Google Scholar 

  22. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics, Texte d’origine: A Unified Introduction with Applications (Birkhäuser, Basel, 1988). https://doi.org/10.1007/978-1-4757-1595-8

    Book  MATH  Google Scholar 

  23. P. Niu et al., Invariant color image watermarking approach using quaternion radial harmonic Fourier moments. Multimed. Tools Appl. 75(13), 7655–7679 (2016)

    Google Scholar 

  24. C. Pak et al., A novel color image LSB steganography using improved 1D chaotic map. Multimed. Tools Appl. 79(1–2), 1409–1425 (2020)

    Google Scholar 

  25. N.K. Pareek et al., Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006). https://doi.org/10.1016/j.imavis.2006.02.021

    Article  Google Scholar 

  26. T. Peng et al., Nonsingular chattering-free barrier function finite time tracker for perturbed nth-order nonlinear systems and its application to chaotic color image scrambling. IEEE Access 10, 56017–56030 (2022). https://doi.org/10.1109/ACCESS.2022.3177689

    Article  Google Scholar 

  27. Z. Ping et al., Image description with Chebyshev–Fourier moments. JOSA A. 19(9), 1748–1754 (2002)

    MathSciNet  Google Scholar 

  28. H. Rahmalan et al., Using Tchebichef moment for fast and efficient image compression. Pattern Recognit. Image Anal. 20(4), 505–512 (2010)

    Google Scholar 

  29. H. Ren et al., Multidistortion-invariant image recognition with radial harmonic Fourier moments. JOSA A. 20(4), 631–637 (2003)

    MathSciNet  Google Scholar 

  30. Y. Sheng, L. Shen, Orthogonal Fourier–Mellin moments for invariant pattern recognition. JOSA A. 11(6), 1748–1757 (1994)

    Google Scholar 

  31. M.R. Teague, Image analysis via the general theory of moments. JOSA. 70(8), 920–930 (1980)

    MathSciNet  Google Scholar 

  32. E.D. Tsougenis et al., Adaptive color image watermarking by the use of quaternion image moments. Expert Syst. Appl. 41(14), 6408–6418 (2014)

    Google Scholar 

  33. E.D. Tsougenis et al., Color image watermarking via quaternion radial Tchebichef moments, in 2013 IEEE International Conference on Imaging Systems and Techniques (IST) (IEEE, 2013), pp. 101–105

  34. B. Vaseghi et al., Fast reaching finite time synchronization approach for chaotic systems with application in medical image encryption. IEEE Access. 9, 25911–25925 (2021). https://doi.org/10.1109/ACCESS.2021.3056037

    Article  Google Scholar 

  35. C. Wang et al., Geometrically resilient color image zero-watermarking algorithm based on quaternion exponent moments. J. Vis. Commun. Image Represent. 41, 247–259 (2016)

    Google Scholar 

  36. C. Wang et al., Image description with polar harmonic Fourier moments. IEEE Trans. Circuits Syst. Video Technol. 30(12), 4440–4452 (2020). https://doi.org/10.1109/TCSVT.2019.2960507

    Article  Google Scholar 

  37. C. Wang et al., Quaternion polar harmonic Fourier moments for color images. Inf. Sci. 450, 141–156 (2018)

    MathSciNet  MATH  Google Scholar 

  38. C. Wang et al., Stereoscopic image description with trinion fractional-order continuous orthogonal moments. IEEE Trans. Circuits Syst. Video Technol. (2021). https://doi.org/10.1109/TCSVT.2021.3094882

    Article  Google Scholar 

  39. X. Wang et al., A new robust color image watermarking using local quaternion exponent moments. Inf. Sci. 277, 731–754 (2014)

    Google Scholar 

  40. C.-Y. Wee, R. Paramesran, On the computational aspects of Zernike moments. Image Vis. Comput. 25(6), 967–980 (2007)

    Google Scholar 

  41. Z. Xia et al., Color medical image lossless watermarking using chaotic system and accurate quaternion polar harmonic transforms. Signal Process. 157, 108–118 (2019)

    Google Scholar 

  42. Z. Xia et al., Geometrically invariant color medical image null-watermarking based on precise quaternion polar harmonic Fourier moments. IEEE Access. 7, 122544–122560 (2019)

    Google Scholar 

  43. B. Xiao et al., Image analysis by fractional-order orthogonal moments. Inf. Sci. 382, 135–149 (2017)

    MATH  Google Scholar 

  44. M. Yamni et al., Accurate 2D and 3D images classification using translation and scale invariants of Meixner moments. Multimed. Tools Appl. 80(17), 26683–26712 (2021). https://doi.org/10.1007/s11042-020-10311-y

    Article  Google Scholar 

  45. M. Yamni, et al., Blind image zero-watermarking algorithm based on radial krawtchouk moments and chaotic system, in 2020 International Conference on Intelligent Systems and Computer Vision (ISCV) (IEEE, 2020), pp. 1–7

  46. M. Yamni et al., Color stereo image zero-watermarking using quaternion radial Tchebichef moments, in 2020 International Conference on Intelligent Systems and Computer Vision (ISCV) (2020), pp. 1–7. https://doi.org/10.1109/ISCV49265.2020.9204169

  47. M. Yamni et al., Copyright protection of multiple CT images using Octonion Krawtchouk moments and Grey Wolf optimizer. J. Franklin Inst. 360(7), 4719–4752 (2023)

    MATH  Google Scholar 

  48. M. Yamni et al., Fast and accurate computation of 3D Charlier moment invariants for 3D image classification. Circuits Syst. Signal Process. 40, 6193–6223 (2021)

    MATH  Google Scholar 

  49. M. Yamni et al., Fractional Charlier moments for image reconstruction and image watermarking. Signal Process. 171, 107509 (2020)

    Google Scholar 

  50. M. Yamni et al., Image watermarking using separable fractional moments of Charlier–Meixner. J. Frankl. Inst. 358(4), 2535–2560 (2021)

    MathSciNet  MATH  Google Scholar 

  51. M. Yamni et al., Quaternion Cartesian fractional Hahn moments for color image analysis. Multimed. Tools Appl. (2021). https://doi.org/10.1007/s11042-021-11432-8

    Article  Google Scholar 

  52. M. Yamni et al., Robust audio watermarking scheme based on fractional Charlier moment transform and dual tree complex wavelet transform. Expert Syst. Appl. 203, 117325 (2022)

    Google Scholar 

  53. M. Yamni et al., Robust zero-watermarking scheme based on novel quaternion radial fractional Charlier moments. Multimed. Tools Appl. 80(14), 21679–21708 (2021). https://doi.org/10.1007/s11042-021-10717-2

    Article  Google Scholar 

  54. H.-Y. Yang et al., Robust color image watermarking using geometric invariant quaternion polar harmonic transform. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 11(3), 1–26 (2015)

    Google Scholar 

  55. P.-T. Yap et al., Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)

    MathSciNet  Google Scholar 

  56. P.-T. Yap et al., Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2057–2062 (2007). https://doi.org/10.1109/TPAMI.2007.70709

    Article  Google Scholar 

  57. P.-T. Yap, R. Paramesran, An efficient method for the computation of Legendre moments. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1996–2002 (2005)

    Google Scholar 

  58. H. Zhang et al., Affine Legendre moment invariants for image watermarking robust to geometric distortions. IEEE Trans. Image Process. 20(8), 2189–2199 (2011)

    MathSciNet  MATH  Google Scholar 

  59. H. Zhang et al., Fractional orthogonal Fourier–Mellin moments for pattern recognition, in Pattern Recognition. ed. by T. Tan et al. (Springer, Singapore, 2016), pp.766–778. https://doi.org/10.1007/978-981-10-3002-4_62

    Chapter  Google Scholar 

  60. Y.-Q. Zhang et al., Spatiotemporal chaos in mixed linear–nonlinear two-dimensional coupled logistic map lattice. Physica A 490, 148–160 (2018)

    MathSciNet  MATH  Google Scholar 

  61. J. Zhou et al., Image analysis by discrete orthogonal Hahn moments, in Image Analysis and Recognition. ed. by M. Kamel, A. Campilho (Springer, Berlin, 2005), pp.524–531. https://doi.org/10.1007/11559573_65

    Chapter  Google Scholar 

  62. H. Zhu et al., General form for obtaining discrete orthogonal moments. IET Image Proc. 4(5), 335–352 (2010)

    MathSciNet  Google Scholar 

  63. H. Zhu et al., Image analysis by discrete orthogonal Racah moments. Signal Process. 87(4), 687–708 (2007)

    MATH  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Karmouni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we establish the relationship between the proposed QRFrHMs and RFrHMs. We interest in this development only in the right-side QRFrHMs where the results found can also be obtained in the same way for left-side QRFrHMs.

Let \(f_{{\text{R}}} (x,y)\), \(f_{{\text{G}}} (x,y)\) and \(f_{{\text{B}}} (x,y)\) be the red, green and blue channels of the color image \(f(x,y)\), respectively, and \(M_{n,m}^{\alpha } (f_{{\text{R}}} )\), \(M_{n,m}^{\alpha } (f_{{\text{G}}} )\) and \(M_{n,m}^{\alpha } (f_{{\text{B}}} )\) its RFrHMs, respectively, which can be calculated from Eq. (23). Let \(\Re (x)\) and \(\Im (x)\) represent the real and imaginary parts of number \(x\), respectively.

Using Eqs. (13), (14) and (23), we have:

$$ \begin{aligned} {}^{R}M_{n,m}^{\alpha } & = \frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {\left[ {f_{R} (r,\theta_{k} )i + f_{G} (r,\theta_{k} )j + f_{B} (r,\theta_{k} )k} \right]\gamma_{r,n} e^{{ - \mu m\theta_{k} }} } } \\ & = i\frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {f_{R} (r,\theta_{k} )} } \gamma_{r,n} e^{{ - \mu m\theta_{k} }}\\&\quad + j\frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {f_{G} (r,\theta_{k} )} } \gamma_{r,n} e^{{ - \mu m\theta_{k} }} \\&\quad+ k\frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {f_{B} (r,\theta_{k} )} } \gamma_{r,n} e^{{ - \mu m\theta_{k} }} \\ {}^{R}M_{n,m}^{\alpha } & = i\left[ {\frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {f_{R} (r,\theta_{k} )} } \gamma_{r,n} \cos (m\theta_{k} )}\right.\\&\quad\left. {- \mu \frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {f_{R} (r,\theta_{k} )} } \gamma_{r,n} \sin (m\theta_{k} )} \right] \\ & \quad + \;j\left[ {\frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {f_{G} (r,\theta_{k} )} } \gamma_{r,n} \cos (m\theta_{k} ) }\right.\\&\quad\left. {- \mu \frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {f_{G} (r,\theta_{k} )} } \gamma_{r,n} \sin (m\theta_{k} )} \right] \\ & \quad + \;k\left[ {\frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {f_{B} (r,\theta_{k} )} } \gamma_{r,n} \cos (m\theta_{k} )}\right.\\&\quad\left. { - \mu \frac{1}{l}\sum\limits_{r = 0}^{{\left\lfloor {N/2} \right\rfloor - 1}} {\sum\limits_{k = 0}^{l - 1} {f_{B} (r,\theta_{k} )} } \gamma_{r,n} \sin (m\theta_{k} )} \right] \\ {}^{R}M_{n,m}^{\alpha } & = i(\Re (M_{n,m}^{\alpha } (f_{R} )) \\&\quad+ \frac{i + j + k}{{\sqrt 3 }}\Im (M_{n,m}^{\alpha } (f_{R} )) + j(\Re (M_{n,m}^{\alpha } (f_{G} )) + \frac{i + j + k}{{\sqrt 3 }}\Im (M_{n,m}^{\alpha } (f_{G} )) \\ & \quad + \;k(\Re (M_{n,m}^{\alpha } (f_{B} ))\\&\quad + \frac{i + j + k}{{\sqrt 3 }}\Im (M_{n,m}^{\alpha } (f_{B} )) \\ {}^{R}M_{n,m}^{\alpha } & = A_{n,m} + iB_{n,m} + jC_{n,m} + kD_{n,m} \\ \end{aligned} $$
(A1)

where

$$ \begin{aligned} A_{n,m} & = \frac{ - 1}{{\sqrt 3 }}[\Im (M_{n,m}^{\alpha } (f_{R} ) + \Im (M_{n,m}^{\alpha } (f_{G} ) + \Im (M_{n,m}^{\alpha } (f_{B} )] \\ B_{n,m} & = (\Re (M_{n,m}^{\alpha } (f_{R} )) + \frac{1}{\sqrt 3 }[\Im (M_{n,m}^{\alpha } (f_{G} ) - \Im (M_{n,m}^{\alpha } (f_{B} )) \\ C_{n,m} & = (\Re (M_{n,m}^{\alpha } (f_{G} )) + \frac{1}{\sqrt 3 }[\Im (M_{n,m}^{\alpha } (f_{B} ) - \Im (M_{n,m}^{\alpha } (f_{R} )) \\ D_{n,m} & = (\Re (M_{n,m}^{\alpha } (f_{B} )) + \frac{1}{\sqrt 3 }[\Im (M_{n,m}^{\alpha } (f_{R} ) - \Im (M_{n,m}^{\alpha } (f_{G} )) \\ \end{aligned} $$
(A2)

Equation (A1) shows that right-side QRFrHMs \(\left\{ {{}^{R}M_{n,m}^{\alpha } } \right\}\) can be derived directly from RFrHMs \(\left\{ {M_{n,m}^{\alpha } } \right\}\) of each color image channel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamni, M., Daoui, A., Karmouni, H. et al. A Powerful Zero-Watermarking Algorithm for Copyright Protection of Color Images Based on Quaternion Radial Fractional Hahn Moments and Artificial Bee Colony Algorithm. Circuits Syst Signal Process 42, 5602–5633 (2023). https://doi.org/10.1007/s00034-023-02379-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02379-2

Keywords

Navigation