Skip to main content
Log in

Image encryption algorithm based on COA and hyperchaotic Lorenz system

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Aiming at the problems of weak security and susceptibility to violent cracking in traditional image encryption algorithms, this paper presents a novel image encryption algorithm based on the Coyote Optimization Algorithm (COA) and the hyperchaotic Lorenz system. The hyperchaotic Lorenz system exhibits sensitivity to both initial conditions and parameters, and complex dynamics behavior. These characteristics pose a challenge for attackers attempting to extract essential information from the image through analysis, thereby enhancing the algorithm's resistance to cracking. Nevertheless, the hyperchaotic Lorenz system is susceptible to the initial values of state variables, and its initial parameters can be easily deciphered. Consequently, this study suggests employing the COA to optimize the sequence generated by the chaotic system. This is done to increase the randomness and complexity of the key, making it more challenging to crack. Given that COA gets trapped in local optima when dealing with high-dimensional problems, this paper proposes the Lévy-flight Coyote Optimization Algorithm (LCOA). By implementing the LCOA, which involves larger step sizes and faster jumps, the algorithm is expected to achieve global optimality during the optimization search process. The experimental results demonstrate that the optimization results of the generated sequence of the hyperchaotic Lorenz system by LCOA can eliminate patterns and regularities of pixel points in the image generated effectively. This leads to a significant enhancement in the resistance of the image encryption algorithm to differential attacks, resulting in a significant enhancement in image encryption performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data and computer code from this study will be made available upon reasonable request.

References

  1. Li, X., Sun, S., Yang, Z., Li, J.: Dynamical analysis and circuit implementation of a memristive chaotic system with infinite coexisting attractors. Phys. Scr. 98(11), 115212 (2023). https://doi.org/10.1088/1402-4896/acfc76

    Article  Google Scholar 

  2. Dlamini, A., Doungmo Goufo, E.F.: Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation. Chaos Solitons Fractals 176, 114084 (2023). https://doi.org/10.1016/j.chaos.2023.114084

    Article  MathSciNet  Google Scholar 

  3. Liang, W., Zhang, L., Yang, Z., Tingting, Yu., Li, J., Li, X.: Image encryption algorithm based on hyperchaotic system and dynamic dna encoding. Phys. Scr. 98(11), 115215 (2023). https://doi.org/10.1088/1402-4896/acfc71

    Article  Google Scholar 

  4. Ge, B., Shen, Z., Wang, X.: Symmetric color image encryption using a novel cross–plane joint scrambling–diffusion method. Symmetry 15(8), 1499 (2023). https://doi.org/10.3390/sym15081499

    Article  Google Scholar 

  5. Ye, X., Wang, X., Gao, S., Mou, J., Wang, Z., Yang, F.: A new chaotic circuit with multiple memristors and its application in image encryption. Nonlinear Dyn. 99, 1489–1506 (2020). https://doi.org/10.1007/s11071-019-05370-2

    Article  Google Scholar 

  6. Setiadi, D.R.I.M., Rijati, N.: An image encryption scheme combining 2d cascaded logistic map and permutation-substitution operations. Computation 11(9), 178 (2023). https://doi.org/10.3390/computation11090178

    Article  Google Scholar 

  7. Wu, W., Wang, Q.: Block image encryption based on chaotic map and fractional fourier transformation. Multimedia Tools Appl. 82(7), 10367–10395 (2023). https://doi.org/10.1007/s11042-022-13675-5

    Article  Google Scholar 

  8. Neamah, A.A., Shukur, A.A.: A novel conservative chaotic system involved in hyperbolic functions and its application to design an efficient colour image encryption scheme. Symmetry 15(8), 1511 (2023). https://doi.org/10.3390/sym15081511

    Article  Google Scholar 

  9. Kanwal, S., Inam, S., Cheikhrouhou, O., Mahnoor, K., Zaguia, A., Hamam, H.: Analytic study of a novel color image encryption method based on the chaos system and color codes. Complexity (2021). https://doi.org/10.1155/2021/5499538

    Article  Google Scholar 

  10. Wang, X.Y., Wang, M.J.: Hyperchaotic Lorenz system. Acta Phys. Sin. 56(9), 5136–5141 (2007). https://doi.org/10.7498/aps.56.5136

    Article  MathSciNet  Google Scholar 

  11. Lawnik, M., Moysis, L., Volos, C.: Chaos-based cryptography: text encryption using image algorithms. Electronics 11(19), 3156 (2022). https://doi.org/10.3390/electronics11193156

    Article  Google Scholar 

  12. Huang, L., Chai, B., Xiang, J., Zhang, Z., Liu, J.: Chaotic image encryption based on spiral traversal and finite field bidirectional diffusion. Phys. Scr. 98(3), 035217 (2023). https://doi.org/10.1088/1402-4896/acb9c6

    Article  Google Scholar 

  13. Lai, Q., Genwen, Hu., Erkan, U., Toktas, A.: A novel pixel-split image encryption scheme based on 2d Salomon map. Expert Syst. Appl. 213, 118845 (2023). https://doi.org/10.1016/j.eswa.2022.118845

    Article  Google Scholar 

  14. Alexan, W., Chen, Y.-L., Por, L.Y., Gabr, M.: Hyperchaotic maps and the single neuron model: a novel framework for chaos-based image encryption. Symmetry 15(5), 1081 (2023). https://doi.org/10.3390/sym15051081

    Article  Google Scholar 

  15. Alexan, W., Elkandoz, M., Mashaly, M., Azab, E., Aboshousha, A.: Color image encryption through chaos and kaa map. IEEE Access 11, 11541–11554 (2023). https://doi.org/10.1109/ACCESS.2023.3242311

    Article  Google Scholar 

  16. Pourasad, Y., Ranjbarzadeh, R., Mardani, A.: A new algorithm for digital image encryption based on chaos theory. Entropy 23(3), 341 (2021). https://doi.org/10.3390/e23030341

    Article  MathSciNet  Google Scholar 

  17. Sarosh, P., Parah, S.A., Mohiuddin Bhat, G.: An efficient image encryption scheme for healthcare applications. Multimedia Tools Appl. 81(5), 7253–7270 (2022). https://doi.org/10.1007/s11042-021-11812-0

    Article  Google Scholar 

  18. Zhang, Z., Tang, J., Ni, H., et al.: Image adaptive encryption algorithm using a novel 2D chaotic system. Nonlinear Dyn. 111, 10629–10652 (2023). https://doi.org/10.1007/s11071-023-08397-8

    Article  Google Scholar 

  19. Wang, Y., Chen, L., Yu, K., et al.: Multi-key spatio-temporal chaotic image encryption and retrieval scheme. Nonlinear Dyn. 112, 3003–3025 (2024). https://doi.org/10.1007/s11071-023-09170-7

    Article  Google Scholar 

  20. Jiang, X., Xie, Y., Liu, B., et al.: Image encryption based on actual chaotic mapping using optical reservoir computing. Nonlinear Dyn. 111, 15531–15555 (2023). https://doi.org/10.1007/s11071-023-08666-6

    Article  Google Scholar 

  21. Shraida, G., Younis, H., Al-Amiedy, T., Anbar, M., Younis, H., Hasbullah, I.: An efficient color-image encryption method using dna sequence and chaos cipher. Comput. Mater. Contin. 75, 2641–2654 (2023). https://doi.org/10.32604/cmc.2023.035793

    Article  Google Scholar 

  22. Feng, W., Qin, Z., Zhang, J., Ahmad, M.: Cryptanalysis and improvement of the image encryption scheme based on feistel network and dynamic dna encoding. IEEE Access 9, 145459–145470 (2021). https://doi.org/10.1109/ACCESS.2021.3123571

    Article  Google Scholar 

  23. Zhu, S., Deng, X., Zhang, W., Zhu, C.: Image encryption scheme based on newly designed chaotic map and parallel dna coding. Mathematics 11(1), 231 (2023). https://doi.org/10.3390/math11010231

    Article  Google Scholar 

  24. Zhu, Y., Wang, C., Sun, J., Fei, Yu.: A chaotic image encryption method based on the artificial fish swarms algorithm and the dna coding. Mathematics 11(3), 767 (2023). https://doi.org/10.3390/math11030767

    Article  Google Scholar 

  25. Wang, X., Yining, Su.: Image encryption based on compressed sensing and dna encoding. Signal Process. Image Commun. 95, 116246 (2021). https://doi.org/10.1016/j.image.2021.116246

    Article  Google Scholar 

  26. Wang, X., Zhao, M.: An image encryption algorithm based on hyperchaotic system and dna coding. Opt. Laser Technol. 143, 107316 (2021). https://doi.org/10.1016/j.optlastec.2021.107316

    Article  Google Scholar 

  27. Zhang, S., Li, H., Wang, K., Qiu, T.: Accelerating intelligent microfluidic image processing with transfer deep learning: a microchannel droplet/bubble breakup case study. Sep. Purif. Technol. 315, 123703 (2023). https://doi.org/10.1016/j.seppur.2023.123703

    Article  Google Scholar 

  28. Huang, Q.-X., Yap, W.L., Chiu, M.-Y., Sun, H.-M.: Privacy-preserving deep learning with learnable image encryption on medical images. IEEE Access. 10, 66345–66355 (2022). https://doi.org/10.1109/ACCESS.2022.3185206

    Article  Google Scholar 

  29. Zhou, Q., Wang, X., Jin, M., Zhang, L., Bijun, Xu.: Optical image encryption based on two-channel detection and deep learning. Opt. Lasers Eng. 162, 107415 (2023). https://doi.org/10.1016/j.optlaseng.2022.107415

    Article  Google Scholar 

  30. Wen, H., Huang, Y., Lin, Y.: High-quality color image compression-encryption using chaos and block permutation. J. King Saud Univ. Comput. Inf. Sci. 35(8), 101660 (2023). https://doi.org/10.1016/j.jksuci.2023.101660

    Article  Google Scholar 

  31. Wang, P., Wang, Y., Xiang, J., Xiao, X.: Fast image encryption algorithm for logistics-sine-cosine mapping. Sensors 22(24), 9929 (2022). https://doi.org/10.3390/s22249929

    Article  Google Scholar 

  32. Yang, Y.-G., Wang, B.-P., Zhou, Y.-H., Shi, W.-M., Liao, X.: Efficient color image encryption by color-grayscale conversion based on steganography. Multimedia Tools Appl. 82(7), 10835–10866 (2023). https://doi.org/10.1007/s11042-022-13689-z

    Article  Google Scholar 

  33. Cao, W., Leng, X., Tao, Yu., Xingfa, Gu., Liu, Q.: A joint encryption and compression algorithm for multiband remote sensing image transmission. Sensors 23(17), 7600 (2023). https://doi.org/10.3390/s23177600

    Article  Google Scholar 

  34. Hagras, E.A.A., Aldosary, S., Khaled, H., Has San, T.M.: Physical layer authenticated image encryption for IoT network based on biometric chaotic signature for MPFrFT OFDM system. Sensors 23(18), 7843 (2023). https://doi.org/10.3390/s23187843

    Article  Google Scholar 

  35. Chen, Z., Yan, Y., Pan, J., et al.: An encryption scheme for MQIR based on binary key image and qubit rotation. Nonlinear Dyn. 111, 22621–22644 (2023). https://doi.org/10.1007/s11071-023-09006-4

    Article  Google Scholar 

  36. Wang, X., Liu, L., Song, M.: Remote sensing image and multi-type image joint encryption based on NCCS. Nonlinear Dyn. 111, 14537–14563 (2023). https://doi.org/10.1007/s11071-023-08578-5

    Article  Google Scholar 

  37. Cai, Q., Yang, R., Shen, C., Yue, K., Chen, Y.: A modified Salp swarm algorithm for parameter estimation of fractional-order chaotic systems. Int. J. Mod. Phys. C 10, 2350131 (2023). https://doi.org/10.1142/S0129183123501310

    Article  Google Scholar 

  38. Lu, T.Z., Liu, J., et al.: Parameter estimation of fractional chaotic systems based on stepwise integration and response sensitivity analysis. Nonlinear Dyn. 111, 15127–15144 (2023). https://doi.org/10.1007/s11071-023-08623-3

    Article  Google Scholar 

  39. Tong, H., Li, T., Xu, Y., et al.: Chaotic coyote optimization algorithm for image encryption and steganography. Multimed. Tools Appl. 83, 20861–20887 (2024). https://doi.org/10.1007/s11042-023-16240-w

    Article  Google Scholar 

  40. Ghazvini, M., Mirzadi, M., Parvar, N.: A modified method for image encryption based on chaotic map and genetic algorithm. Multimedia Tools Appl. 79, 26927–26950 (2020). https://doi.org/10.1007/s11042-020-09058-3

    Article  Google Scholar 

  41. Luo, Y., Ouyang, X., Liu, J., et al.: An image encryption scheme based on particle swarm optimization algorithm and hyperchaotic system. Soft. Comput. 26, 5409–5435 (2022). https://doi.org/10.1007/s00500-021-06554-y

    Article  Google Scholar 

  42. Wang, J., Song, X., Abd, A.A., El-Latif: Single objective particle swarm optimization-based chaotic image encryption scheme. Electronics 11(16), 2628 (2022). https://doi.org/10.3390/electronics11162628

    Article  Google Scholar 

  43. Toktas, A., Erkan, U., Ustun, D., Wang, X.: Parameter optimization of chaotic system using pareto-based triple objective artificial bee colony algorithm. Neural Comput. Appl. 35(18), 13207–13223 (2023). https://doi.org/10.1007/s00521-023-08434-y

    Article  Google Scholar 

  44. Wang, S., Wei, Hu., Riego, I., Yongguang, Yu.: Improved surrogate-assisted whale optimization algorithm for fractional chaotic systems’ parameters identification. Eng. Appl. Artif. Intell.Appl. Artif. Intell. 110, 104685 (2022). https://doi.org/10.1016/j.engappai.2022.104685

    Article  Google Scholar 

  45. Pierezan, J., Dos Santos Coelho, L.: Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. (2018). https://doi.org/10.1109/CEC.2018.8477769

  46. Zhang, Q., Xianglong, Bu., Zhan, Z.-H., Li, J., Zhang, H.: An efficient optimization state-based coyote optimization algorithm and its applications. Appl. Soft Comput. 147, 110827 (2023). https://doi.org/10.1016/j.asoc.2023.110827

    Article  Google Scholar 

  47. Roeva, O., Zoteva, D., Vassilev, P.: Generalized net model of coyote optimization algorithm. Int. J. Bioautom. 26(4), 353 (2022). https://doi.org/10.7546/ijba.2022.26.4.000787

    Article  Google Scholar 

  48. De Souza, R.C.T., de Macedo, C.A., dos Santos Coelho, L.D., Pierezan, J., Mariani, V.C.: Binary coyote optimization algorithm for feature selection. Pattern Recogn. 107, 107470 (2020). https://doi.org/10.1016/j.patcog.2020.107470

    Article  Google Scholar 

  49. Ding, L., Bai, Y.-L., Fan, M.-H., Qing-He, Yu., Zhu, Y.-J., Chen, X.-Y.: Serial-parallel dynamic echo state network: a hybrid dynamic model based on a chaotic c-oyote optimization algorithm for wind speed prediction. Expert Syst. Appl. 212, 118789 (2023). https://doi.org/10.1016/j.eswa.2022.118789

    Article  Google Scholar 

  50. Taleb, S.M., Meraihi, Y., Gabis, A.B., Mirjalili, S., Zaguia, A., Ramdane-Cherif, A.: Solving the mesh router nodes placement in wireless mesh networks using coyote optimization algorithm. IEEE Access 10, 52744–52759 (2022). https://doi.org/10.1109/ACCESS.2022.3166866

    Article  Google Scholar 

  51. Ali, E.S., Abd Elazim, S.M., Balobaid, A.S.: Implementation of coyote optimization algorithm for solving unit commitment problem in power systems. Energy 263, 125697 (2023). https://doi.org/10.1016/j.energy.2022.125697

    Article  Google Scholar 

  52. Arnol'd, VI (1968) Problèmes ergodiques de la mécanique classique. English Ergodic problems of classical mechanics. In: Arnold, V.I., Avez, A., Benjamin. https://lccn.loc.gov/68019936

  53. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmosp. Sci. 20(2), 130–141 (1963). https://doi.org/10.1175/1520-0469(1963)020%3c0130:DNF%3e2.0.CO;2

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Zhang made substantial contributions to the conception of the work. Qin designed the method and implemented it.

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Zhang, Y. Image encryption algorithm based on COA and hyperchaotic Lorenz system. Nonlinear Dyn 112, 10611–10632 (2024). https://doi.org/10.1007/s11071-024-09632-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09632-6

Keywords

Navigation