Skip to main content
Log in

6-Bit Ka-Band DMTL Phase Shifter Using Parallel LC Circuits

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new design of DMTL phase shifter is proposed using parallel LC circuits. The proposed design produces resonance peaks in the return loss curve. By creating two different resonance frequencies and impedances on the two sides of the desired frequency with a specific impedance, it is possible to obtain the desired phase shift and appropriate return loss. This research has two main aims, which are pursued by proposing two phase shifters. The first aim is to introduce a new method in the phase shifter. The results of the first proposed phase shifter prove the effectiveness of the new method. The second aim, which is based on the introduced new method, is to achieve a small size Ka-band 6-bit DMTL phase shifter. It is done by the second proposed phase shifter. The return loss and phase shift of both phase shifters are first calculated using two different computations for a unit cell at the desired frequency. Then, the curves of return loss and phase shift in terms of frequency are plotted using MATLAB for six independent bits and 64 states of the 6-bit DMTL phase shifter. Finally, the ADS software is used for both phase shifters to confirm the calculation results again and verify the curves plotted in MATLAB. The simplicity of the proposed structure allows the simple fabrication process in accordance with the standard MEMS-based fabrication processes. The length of the second phase shifter is 6.6 mm, which is the smallest among the 6-bit DMTL phase shifters presented so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. S. Afrang, B.Y. Majlis, Distributed transmission line phase shifter using MEMS switches and inductors. Microsyst. Technol. 14(8), 1173–1183 (2008). https://doi.org/10.1007/s00542-008-0637-9

    Article  Google Scholar 

  2. S. Afrang, K. Samandari, G. Rezazadeh, A small size Ka band six-bit DMTL phase shifter using new design of MEMS switch. Microsyst. Technol. 23(6), 1853–1866 (2017). https://doi.org/10.1007/s00542-016-2987-z

    Article  Google Scholar 

  3. N.S. Barker, G.M. Rebeiz, Optimization of distributed MEMS transmission-line phase shifters-U-band and W-band designs. IEEE Trans. Microw. Theory Tech. 48(11), 1957–1966 (2000). https://doi.org/10.1109/22.883878

    Article  Google Scholar 

  4. D.J. Bell, T.J. Lu, N.A. Fleck, S.M. Spearing, MEMS actuators and sensors: observations on their performance and selection for purpose. J. Micromech. Microeng. 15(7), S153 (2005). https://doi.org/10.1088/0960-1317/15/7/022

    Article  Google Scholar 

  5. A. Borgioli, Y. Liu, A.S. Nagra, R.A. York, Low-loss distributed MEMS phase shifter. IEEE Microw. Guid. Wave Lett. 10(1), 7–9 (2000). https://doi.org/10.1109/75.842070

    Article  Google Scholar 

  6. A. Chakraborty, B. Gupta, Utility of RF MEMS miniature switched capacitors in phase shifting applications. AEU-Int. J. Electron. C. 75, 98–107 (2017). https://doi.org/10.1016/j.aeue.2017.03.011

    Article  Google Scholar 

  7. N.-J. Choi, Y.-S. Lee, J.-H. Kwak, J.-S. Park, K.-B. Park, K.-S. Shin, H.-D. Park, J.-C. Kim, J.-S. Huh, D.-D. Lee, Chemical warfare agent sensor using MEMS structure and thick film fabrication method. Sens. Actuators B Chem. 108(1–2), 177–183 (2005). https://doi.org/10.1016/j.snb.2005.01.041

    Article  Google Scholar 

  8. C. Comi, A. Corigliano, A. Ghisi, S. Zerbini, A resonant micro accelerometer based on electrostatic stiffness variation. Meccanica 48(8), 1893–1900 (2013). https://doi.org/10.1007/s11012-013-9768-x

    Article  MATH  Google Scholar 

  9. A.F. Daw, M.S. El-Dessouky, A.E. El-Hannawy, M.M. El Hady, 2 GHz RF MEMS based microwave phase shifter with high resolution tuning. In 2008 International Conference on Computer Engineering & Systems, pp. 35–40. IEEE (2008). https://doi.org/10.1109/ICCES.2008.4772962

  10. S. Dey, S.K. Koul, 10–25 GHz frequency reconfigurable MEMS 5-bit phase shifter using push–pull actuator based toggle mechanism. J. Micromech. Microeng. 25(6), 065011 (2015). https://doi.org/10.1088/0960-1317/25/6/065011

    Article  Google Scholar 

  11. S. Dey, S.K. Koul, Reliable, compact, and tunable MEMS bandpass filter using arrays of series and shunt bridges for 28-GHz 5G applications. IEEE Trans. Microw. Theory Tech. 69(1), 75–88 (2020). https://doi.org/10.1109/TMTT.2020.3034182

    Article  Google Scholar 

  12. Y. Du, J. Bao, Z. He, J. Jiang, A X-band switched-line 5-bit phase shifter with RF MEMS multithrow switches. In The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, vol. 1, pp. 296–299. IEEE (2013). https://doi.org/10.1109/NEMS.2013.6559735

  13. Y.J. Du, J.F. Bao, J.W. Jiang, A new design of multi-bit RF MEMS distributed phase shifters for phase error reduction. Microsyst. Technol. 19(2), 237–244 (2013). https://doi.org/10.1007/s00542-012-1649-z

    Article  Google Scholar 

  14. Y. Du, J. Bao, X. Zhao, 5-bit MEMS distributed phase shifter. Electron. Lett. 46(21), 1452 (2010). https://doi.org/10.1049/el.2010.2492

    Article  Google Scholar 

  15. K. Entesari, G.M. Rebeiz, A 12–18-GHz three-pole RF MEMS tunable filter. IEEE Trans. Microw. Theory Tech. 53(8), 2566–2571 (2005). https://doi.org/10.1109/TMTT.2005.852761

    Article  Google Scholar 

  16. M. Fernandez-Bolanos, T. Lisec, P. Dainesi, A.M. Ionescu, Thermally stable distributed MEMS phase shifter for airborne and space applications. In 2008 38th European Microwave Conference, pp. 100–103. IEEE (2008). https://doi.org/10.1109/EUMC.2008.4751397

  17. F. Flaviis, N.G. Alexopoulos, O.M. Stafsudd, Planar microwave integrated phase-shifter design with high purity ferroelectric material. IEEE Trans. Microw. Theory Tech. 45(6), 963–969 (1997). https://doi.org/10.1109/22.588610

    Article  Google Scholar 

  18. J.S. Hayden, High-performance digital X-band and Ka-band distributed MEMS phase shifters. University of Michigan (2002).

  19. Y. Huang, J. Bao, X. Li, Y. Wang, Y. Du, A 4-bit switched-line phase shifter based on MEMS switches. In 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 405–408. IEEE (2015). https://doi.org/10.1109/NEMS.2015.7147454

  20. Z. Jian, Y.-Y. Wei, C. Chen, Z. Yong, L. Le, A compact 5-bit switched-line digital MEMS phase shifter. In 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 623–626. IEEE (2006). https://doi.org/10.1109/NEMS.2006.334859

  21. L. Jin, Q. Wu, K. Tang, X. He, G. Yang, J. Fu, R. Zhang, J. Lee, A novel design of RF-MEMS phase shifter based on bridge-like coplanar waveguide. In 2008 6th IEEE International Conference on Industrial Informatics, pp. 171–175. IEEE (2008). https://doi.org/10.1109/INDIN.2008.4618088

  22. S.Y. Kazakov, S.V. Shchelkunov, V.P. Yakovlev, A. Kanareykin, E. Nenasheva, J.L. Hirshfield, Fast ferroelectric phase shifters for energy recovery linacs. Phys. Rev. Spec. Top. Accel Beams 13(11), 1–8 (2010). https://doi.org/10.1103/PhysRevSTAB.13.113501

    Article  Google Scholar 

  23. B. Lacroix, A. Pothier, A. Crunteanu, P. Blondy, Phase shifter design based on fast RF MEMS switched capacitors. In 2008 European Microwave Integrated Circuit Conference, pp. 478–481. IEEE (2008). https://doi.org/10.1109/EMICC.2008.4772333

  24. X. Li, K.Y. Chan, R. Ramer, E-band RF MEMS differential reflection-type phase shifter. IEEE Trans. Microw. Theory Tech. 67(12), 4700–4713 (2019). https://doi.org/10.1109/TMTT.2019.2944623

    Article  Google Scholar 

  25. J. Lou, J. Hao, X. Hu, Q. Li, P. Dai, Design and fabrication of 2-bit loaded-line MEMS phase shifter. In 2010 International Conference on Microwave and Millimeter Wave Technology, pp. 1652–1654. IEEE (2010). https://doi.org/10.1109/ICMMT.2010.5524754

  26. K. Maruhashi, H. Mizutani, K. Ohata, A Ka-band 4-bit monolithic phase shifter using unresonated FET switches. In 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 98CH36192), vol. 1, pp. 51–54. IEEE (1998)

  27. G. McFeetors, M. Okoniewski, Analog tunable microwave phase shifters using RF MEMS. In 2004 10th International Symposium on Antenna Technology and Applied Electromagnetics and URSI Conference, vol. 2, pp. 1–4. IEEE (2004). https://doi.org/10.1109/ANTEM.2004.7860653

  28. A. Medina-Rull, F. Pasadas, E.G. Marin, A. Toral-Lopez, J. Cuesta, A. Godoy, D. Jimenez, F.G. Ruiz, A graphene field-effect transistor based analogue phase shifter for high-frequency applications. IEEE Access 8, 209055–209063 (2020). https://doi.org/10.1109/ACCESS.2020.3038153

    Article  Google Scholar 

  29. H.M. Ouakad, H.M. Sedighi, M.I. Younis, One-to-one and three-to-one internal resonances in MEMS shallow arches. J. Comput. Nonlinear Dyn. 12(5), 51025 (2017). https://doi.org/10.1115/1.4036815

    Article  Google Scholar 

  30. D.M. Pozar, Microwave Engineering (John Wiley & Sons, Hoboken, 2011)

    Google Scholar 

  31. M. Puri, A. Das, J.S. Sengar, A novel design of monolithically integrated phased array antenna employing 4-bit DMTL phase shifter. In 2013 Tenth International Conference on Wireless and Optical Communications Networks (WOCN), pp. 1–6. IEEE (2013). https://doi.org/10.1109/WOCN.2013.6616253

  32. G.M. Rebeiz, RF MEMS: Theory, Design, and Technology (John Wiley & Sons, Hoboken, 2004)

    Google Scholar 

  33. J.S. Sengar, A. Das, M. Puri, Design of 3-bit digital DMTL phase shifter for C- to Ku-band applications. In 2013 Third International Conference on Advances in Computing and Communications, pp. 427–432. IEEE (2013). https://doi.org/10.1109/ICACC.2013.91

  34. C. Shafai, L. Shafai, S. Sharma, D.D. Chrusch, Fabrication and testing of a microstrip phase shifter using micromachined reconfigurable ground plane. In IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), vol. 1, pp. 274–277. IEEE (2003). https://doi.org/10.1109/APS.2003.1217451

  35. M.M. Teymoori, M. Dousti, S. Afrang, A low-loss compact six-bit DMTL phase shifter for phased array antenna applications. Int. J. Circuit Theory Appl. 48(12), 2111–2129 (2020). https://doi.org/10.1002/cta.2871

    Article  Google Scholar 

  36. K.T. Trinh, J. Feng, S.H. Shehab, N.C. Karmakar, 1.4 GHz low-cost PIN diode phase shifter for L-band radiometer antenna. IEEE Access 7, 95274–95284 (2019). https://doi.org/10.1109/ACCESS.2019.2926140

    Article  Google Scholar 

  37. Q. Wu, K. Tang, Z.-R. Feng, F.-L. Sun, L.-W. Li, A DMTL phase shifter using insulation layer and saw-shaped CPW. In 2007 Asia-Pacific Microwave Conference, pp. 1–4. IEEE (2007). https://doi.org/10.1109/APMC.2007.4554687

  38. J.G. Yang, K. Yang, Ka-band 5-bit MMIC phase shifter using InGaAs PIN switching diodes. IEEE Microw. Wirel. Compon. Lett. 21(3), 151–153 (2011). https://doi.org/10.1109/LMWC.2010.2104314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Afrang.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrang, O.R., Afrang, S. 6-Bit Ka-Band DMTL Phase Shifter Using Parallel LC Circuits. Circuits Syst Signal Process 42, 107–129 (2023). https://doi.org/10.1007/s00034-022-02150-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02150-z

Keywords

Navigation