Skip to main content
Log in

Single VDTA-based Lossless and Lossy Electronically Tunable Positive and Negative Grounded Capacitance Multipliers

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes realization of simple electronically adjustable grounded capacitance multiplier (GCM) circuits using a single voltage differencing transconductance amplifier (VDTA) as an active building block, with one floating capacitor with/without a grounded resistor. The proposed capacitance multipliers circuits can be tuned electronically using VDTA transconductance gain adjustment. The sensitivity analysis of multiplication factors was performed in ideal and non-ideal conditions, while the influence of parasitic elements on the operating frequencies range was examined by mathematical analysis. To emphasize the applicability of the proposed circuits, the band-pass filter was constructed as a model for application. Functional, time, and frequency domain analyses were conducted using PSpice simulations in order to verify the theory. The temperature dependence of the example application was investigated. Monte Carlo analysis was carried out to verify the example application’s robustness against the variation of the passive elements. In addition, a comparison with circuits in the literature is made to show the superiority of the proposed GCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. M.T. Abuelma’atti, S.K. Dhar, Z.J. Khalifa, New two-CFOA-based floating immittance simulators. Analog Integr. Circuits Signal Process. 91, 479–489 (2017)

    Article  Google Scholar 

  2. M.A. Al-Absi, M.T. Abulema’atti, A tunable floating impedance multiplier. Arab. J. Sci. Eng. 44, 7085–7089 (2019). https://doi.org/10.1007/s13369-019-03792-z

    Article  Google Scholar 

  3. M.A. Al-Absi, M.T. Abuelma’atti, A novel tunable grounded positive and negative impedance multiplier. IEEE Trans. Circuits Syst. II: Express Briefs 66(6), 924–927 (2019)

  4. M.A. Al-Absi, A.A. Al-Khulaifi, A new floating and tunable capacitance multiplier with large multiplication factor. IEEE Access 7, 120076–120081 (2019). https://doi.org/10.1109/access.2019.2936800

    Article  Google Scholar 

  5. M.A. Al-Absi, E.S. Al-Suhaibani, M.T. Abuelma’atti, A new compact CMOS C-multiplier. Analog Integr. Circuits Signal Process. 90(3), 653–658 (2017)

    Article  Google Scholar 

  6. E. Alaybeyoglu, Implementation of capacitor multiplier with cell-based variable transconductance amplifier. IET Circuits Devices Syst. 13(3), 267–272 (2018)

    Article  Google Scholar 

  7. E. Alaybeyoglu, H. Kuntman, Capacitor multiplier with high multiplication factor for integrated low pass filter of biomedical applications using DTMOS technique. Int. J. Electron. Commun. (AEÜ) 107, 291–297 (2019)

    Article  Google Scholar 

  8. H. Alpaslan, DVCC-based floating capacitance multiplier design. Turkish J. Electr. Eng. Comput. Sci. 25, 1334–1345 (2017)

    Article  Google Scholar 

  9. M. Altun, H. Kuntman, Design of a fully differential current mode operational amplifier with improved input-output impedances and its filter applications. Int. J. Electron. Commun. (AEÜ) 62(3), 239–244 (2008)

    Article  Google Scholar 

  10. A.F. Arbel, L. Goldminz, Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circ. Sig. 3, 243–255 (1992)

    Article  Google Scholar 

  11. R. Arslanalp, T. Yücehan, Capacitance multiplier design by using CFOA. 23rd Sig. Proc. Comm. App. Conf. 1393–1396 (2015). https://doi.org/10.1109/SIU.2015.7130102

  12. D.R. Bhaskar, G. Mann, P. Kumar, OTRA-based positive/negative grounded capacitance multiplier. Analog. Integr. Circ. Sig. Process 111, 469–481 (2022)

    Article  Google Scholar 

  13. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing; classification, review and new proposals. Radioengg. J. 17(4), 15–32 (2008)

    Google Scholar 

  14. D. Biolek, J. Vavra, A.Ü. Keskin, CDTA-based capacitance multipliers. Circuits Syst Signal Process. 38, 1466–1481 (2019)

    Article  Google Scholar 

  15. P. Coste, P. Martari, M. Neag, V. Ionescu, Capacitor Multiplier with One Transconductor Cell. Int. Sem. Conf. (CAS). pp. 195–198 (2019). https://doi.org/10.1109/SMICND.2019.8923824

  16. M. Dogan, E. Yuce, Supplementary single active device based grounded immittance function simulators. Int. J. Electron. Commun. (AEÜ) 94, 311–321 (2018)

    Article  Google Scholar 

  17. M. Dogan, E. Yuce, A new CFOA based grounded capacitance multiplier. Int. J. Electron. Commun. (AEÜ) 115, 153034, (2020). https://doi.org/10.1016/j.aeue.2019.153034.

  18. G. Ferri, L. Safari, G. Barile, M. Scarsella, V. Stornelli, New resistor-less electronically controllable ±C simulator employing VCII, DVCC, and a grounded capacitor. Electronics 11, 286 (2022)

    Article  Google Scholar 

  19. W. Germanovix, E. Bonizzoni, F. Maloberti, Capacitance super multiplier for sub- hertz low-pass integrated filters. IEEE Trans. Circuits Syst. II Express Briefs 65(3), 301–305 (2018)

    Article  Google Scholar 

  20. I. Guerra-Gómez, E. Tlelo-Cuautle, L. Gerarado de la Fraga, Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits. Appl. Math. Comput. 222, 167–176 (2013)

    MATH  Google Scholar 

  21. A. Güney, H. Kuntman, New floating inductance simulator employing a single ZC-VDTA and one grounded capacitor. 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS) (2014), pp. 1–2

  22. A. Hari Prakash Reddy, R.N.P.S.S. Charan, M. Srivastava, New active-only impedance multiplier using VDBAs. Control applications in modern power system (pp. 527–535). Singapore: Springer (2021)

  23. G. Komanapalli, R. Pandey, N. Pandey, New sinusoidal oscillator configurations using operational transresistance amplifier. Int. J. Circ. Theor. Appl. 47, 666–685 (2019)

    Article  Google Scholar 

  24. P. Kumar, N. Pandey, S.K. Paul, Realization of resistorless and electronically tunable inverse filters using VDTA. J. Circuits, Syst., Comput. 28(9), 1950143 (2019).

  25. J. López-Arredondo, E. Tlelo-Cuautle, L. Gerardo de la Fraga, High-Q and wide-bandwidth capacitor multiplier optimized by NSGA-II. IETE J. Res. 65(5), 661–666 (2019)

    Article  Google Scholar 

  26. B. Metin, K. Pal, O. Cicekoglu, All-pass filters using DDCC- and MOSFET-based electronic resistor. Int. J. Circ. Theor. Appl. 39, 881–891 (2011)

    Google Scholar 

  27. P. Moonmuang, T. Pukkalanun, W. Tangsrirat, Voltage differencing buffered amplifier-based electronically tunable grounded capacitance multiplier. Proceedings of the 8th International Conference on Informatics, Environment, Energy and Applications - IEEA’19. (2019). https://doi.org/10.1145/3323716.3323740

  28. P. Moonmuang, W. Tangsrirat, Electronically Tunable Resistorless Capacitance Multiplier Employing VDBAs. Proceedings of the 3rd International Conference on Communication and Information Processing – ICCIP. pp. 512–515 (2017)

  29. P. Moonmuang, W. Tangsrirat, Single VDTA-based tunable floating lossy inductance simulation circuits. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.1900752

    Article  Google Scholar 

  30. J.M. Muñoz-Pacheco, E. Tlelo-Cuautle, I. Toxqui-Toxqui, C. Sánchez-López, R. Trejo-Guerra, Frequency limitations in generating multi-scroll chaotic attractors using CFOAs. Int. J. Electron. 101(11), 1559–1569 (2014)

    Article  Google Scholar 

  31. I. Myderrizi, A. Zeki, Electronically tunable DXCCII-based grounded capacitance multiplier. Int. J. Electron. Commun. (AEÜ) 68, 899–906 (2014)

    Article  Google Scholar 

  32. B.C. Nagar, S.K. Paul, Lossless grounded admittance simulator using OTRA. Analog. Integr. Circ. Sig. Process 106, 649–659 (2021). https://doi.org/10.1007/s10470-019-01410-4

    Article  Google Scholar 

  33. D. Özenli, E. Alaybeyoğlu, H. Kuntman, A grounded capacitance multiplier circuit employing VDTA. 2021 13th international conference on electrical and electronics engineering (ELECO), pp. 38–41 (2021)

  34. E. Ozer, Electronically tunable CFTA based positive and negative grounded capacitance multipliers. Int. J. Electron. Commun. (AEÜ) 134, 153685 (2021). https://doi.org/10.1016/j.aeue.2021.153685

    Article  Google Scholar 

  35. E. Ozer, M.E. Basak, F. Kacar, Realizations of lossy and lossless capacitance multiplier using CFOAs. Int. J. Electron. Commun. (AEÜ) 127, 153444 (2020). https://doi.org/10.1016/j.aeue.2020.153444

    Article  Google Scholar 

  36. I. Padilla-Cantoya, P.M. Furth, Enhanced grounded capacitor multiplier and its floating implementation for analog filters. IEEE Trans. Circuits Syst. II Express Briefs 62(10), 962–966 (2015)

    Article  Google Scholar 

  37. I. Padilla-Cantoya, L. Rizo-Dominguez, J. Molinar-Solis, Capacitance multiplier with large multiplication factor, high accuracy, and low power and silicon area for floating applications. IEICE Electron. Express 15(3), 20171191–20171191 (2018)

    Article  Google Scholar 

  38. P.B. Petrović, Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Analog. Integr. Circ. Sig. 96(3), 417–433 (2018)

    Article  Google Scholar 

  39. P.B. Petrovic, Current/voltage mode full-wave rectifier based on a single CCCII. Int. J. Circ. Theor. Appl. (2020). https://doi.org/10.1002/cta.2781

    Article  Google Scholar 

  40. P.B. Petrovic, Variable mode full-wave rectifier based on MVDTA. IET Circuits, Devices & Systems. Article ID: CDS212106, (2021). https://doi.org/10.1049/cds2.12106

  41. P.B. Petrović, New floating/grounded FDNC and non-ideal grounded FDNR simulators based on VDTA. Analog. Integr. Circ. Sig. Process 110, 259–277 (2022)

    Article  Google Scholar 

  42. J. Pimpol, O. Channumsin, W. Tangsrirat, Floating capacitance multiplier circuit using full-balanced voltage differencing buffered amplifiers (FB-VDBAs). Proc Int Multiconf Eng Comput Sci., 1–4 (2016)

  43. S. Pourashraf, J. Ramírez-Angulo, J.M. Hinojo Montero, R. González-Carvajal, A.J. Lopez-Martin, ± 0.25-V class-AB CMOS capacitance multiplier and precision rectifiers. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27(4), 830–842 (2019)

    Article  Google Scholar 

  44. N. Roongmuanpha, W. Tangsrirat, Practical floating capacitance multiplier implementation with commercially available IC LT1228s. J. Microelectron., Electron. Compon. Mater. 51(1), 85–94 (2021)

    Google Scholar 

  45. J. Satansup, W. Tangsrirat, Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors. Microelectron. J. 45(6), 613–618 (2014)

    Article  Google Scholar 

  46. S. Singh, J.N. Pandey, R. Pandey, Electronically tunable grounded capacitance multiplier. IETE J. Res. (2020). https://doi.org/10.1080/03772063.2020.1739573

    Article  Google Scholar 

  47. R. Sotner, J. Jerabek, L. Polak, J. Petrzela, Capacitance multiplier using small values of multiplication factors for adjustability extension and parasitic resistance cancellation technique. IEEE Access 8, 144382–144392 (2020)

    Article  Google Scholar 

  48. M. Srivastava, D. Prasad, D.R. Bhaskar, New electronically tunable grounded inductor simulator employing single vdta and one grounded capacitor. J. Eng. Sci. Technol. 12(1), 113–126 (2017)

    Google Scholar 

  49. V. Stornelli, L. Safari, G. Barile, G. Ferri, A new extremely low power temperature insensitive electronically tunable VCII based grounded capacitance multiplier. IEEE Trans. Circuits Syst. II: Express Briefs (2020). https://doi.org/10.1109/TCSII.2020.3005524

    Article  Google Scholar 

  50. V. Stornelli, L. Safari, G. Barile, G. Ferri, A new VCII based grounded positive/negative capacitance multiplier. Int. J. Electron. Commun. (AEÜ) 137, 153793 (2021). https://doi.org/10.1016/j.aeue.2021.153793

    Article  Google Scholar 

  51. W. Tangsrirat, O. Channumsin, J. Pimpol, Electronically adjustable capacitance multiplier circuit with a single voltage differencing gain amplifier (VDGA). J. Microelectron., Electron. Compon. Mater. 49(4), 211–217 (2019)

    Google Scholar 

  52. M.A. Valencia-Ponce, E. Tlelo-Cuautle, L. Gerardo de la Fraga, On the sizing of CMOS operational amplifiers by applying many-objective optimization algorithms. Electronics 10, 3148 (2021)

    Article  Google Scholar 

  53. J. Vavra, A capacitance multiplier based on DBTA, Proceedings of the 2017 IEEE Nordic Circuits and Systems Conference (NORCAS 2917) pp. 1–5 (2017)

  54. R. Verma, N. Pandey, R. Pandey, Novel CFOA based capacitance multiplier and its application. Int. J. Electron. Commun. (AEÜ) 107, 192–198 (2019)

    Article  Google Scholar 

  55. A. Yeşil, F. Kaçar, H. Kuntman, New Simple CMOS realization of voltage differencing transconductance amplifier and Its RF filter application. Radioengineering 20(3), 632–637 (2011)

    Google Scholar 

  56. A. Yesil, E. Yuce, S. Minaei, Grounded capacitance multipliers based on active elements. Int. J. Electron. Commun. (AEÜ) 79, 243–249 (2017)

    Article  Google Scholar 

  57. T. Yucehan, E. Yuce, A new grounded capacitance multiplier using a single ICFOA and a grounded capacitor. IEEE Trans. Circuits Syst. II Express Briefs 69, 723733 (2022)

    Google Scholar 

  58. N.H.E. Weste, D. Harris, CMOS VLSI design: a circuits and systems perspective. 3rd Ed., Addison-Wesley, pp. 231–235 (2005).

Download references

Acknowledgements

This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, and these results are parts of the Grant No. 451-03-68/2022-14/200132 with University of Kragujevac, Faculty of Technical Sciences Čačak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Petrović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, P.B. Single VDTA-based Lossless and Lossy Electronically Tunable Positive and Negative Grounded Capacitance Multipliers. Circuits Syst Signal Process 41, 6581–6614 (2022). https://doi.org/10.1007/s00034-022-02094-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02094-4

Keywords

Navigation