Skip to main content
Log in

Electronically tunable grounded inductance simulators and capacitor multipliers realization by using single Current Follower Transconductance Amplifier (CFTA)

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Inductance simulators and capacitor multipliers can be used to implement several electronic devices such as active filters, oscillators, cancellation of parasitic elements and phase shifting circuits. In this work, grounded inductance simulators (GISs) and grounded capacitor multipliers (GCMs) employing only one active component Current Follower Transconductance Amplifier (CFTA) and two passive elements (R and C) have been proposed. The aim of this work is to implement inductance simulators and capacitor multipliers using the minimum number of active elements which commercially available. The performance of the proposed circuits verified by using the LTSpice. To support the theoretical study, all simulation results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the first author on reasonable request.

References

  1. Koomgaew, C., Petchmaneelumka, W., & Riewruja, V. (2009). OTA-based floating inductance simulator. In ICROS-SICE ınternational joint conference 2009 (Vol. 1, pp. 857–860).

  2. Petchmaneelumka, W. (2009). OTAs-based positive/negative floating inductance simulator. In Proceedings of the international multi conference of engineers and computer scientists (Vol. II, pp. 18–21). Hong Kong.

  3. Soni, P., Singh, B. P., & Bhardwaj, M. (2011). Design of OTA based floating inductor. In 2011 international conference on devices and communications (ICDeCom) (pp. 1–4). IEEE. https://doi.org/10.1109/ICDECOM.2011.5738487.

  4. Gupta, N., Suthar, M., Singh, S., & Soni, P. (2012). Active filter design using two OTA based floating inductance simulator. International Journal of VLSI & Signal Processing Applications, V, 2(1), 47–50.

    Google Scholar 

  5. Yamacli, S., Ozcan, S., & Kuntman, H. (2011). New active-only grounded inductance simulator employing current-mode approach suitable for wide band operation. International Journal of Electronics, 98(8), 981–994. https://doi.org/10.1080/00207217.2010.506843

    Article  Google Scholar 

  6. Sagbas, M., Ayten, U. E., Sedef, H., & Koksal, M. (2009). Floating immittance function simulator and its applications. Circuits, Systems, and Signal Processing, 28(1), 55–63. https://doi.org/10.1007/s00034-008-9057-4

    Article  MATH  Google Scholar 

  7. Pandey, R., Pandey, N., Paul, S. K., Singh, A., Sriram, B., & Trivedi, K. (2014). Novel grounded inductance simulator using single OTRA. International Journal of Circuit Theory and Applications, 42(10), 1069–1079. https://doi.org/10.1002/cta.1905

    Article  Google Scholar 

  8. Kilinc, S., Salama, K. N., & Cam, U. (2006). Realization of fully controllable negative inductance with single operational transresistance amplifier. Circuits, Systems, and Signal Processing, 25(1), 47–57. https://doi.org/10.1007/s00034-004-0706-y

    Article  MATH  Google Scholar 

  9. Nagar, B. C., & Paul, S. K. (2016). Negative inductance simulator using OTRA. In 2016 International conference on microelectronics, computing and communications (MicroCom) (Vol. 3, pp. 1–3). IEEE. https://doi.org/10.1109/MicroCom.2016.7522486.

  10. Ferri, G., Guerrini, N., Silverii, E., & Tatone, A. (2008). Vibration damping using CCII-based inductance simulators. IEEE Transactions on Instrumentation and Measurement, 57(5), 907–914. https://doi.org/10.1109/TIM.2007.913762

    Article  Google Scholar 

  11. Yuce, E., Cicekoglu, O., & Minaei, S. (2006). CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integrated Circuits and Signal Processing, 46(3), 287–291. https://doi.org/10.1007/s10470-006-1624-7

    Article  Google Scholar 

  12. Myderrizi, I., Minaei, S., & Yuce, E. (2011). DXCCII-based grounded inductance simulators and filter applications. Microelectronics Journal, 42(9), 1074–1081. https://doi.org/10.1016/j.mejo.2011.06.008

    Article  Google Scholar 

  13. Metin, B. (2011). Supplementary inductance simulator topologies employing single DXCCII. Radioengineering, 20(3), 614–618.

    Google Scholar 

  14. Yeşil, A., & Kaçar, F. (2015). New dxccii-based grounded series inductance simulator topologies. Istanbul University - Journal of Electrical and Electronics Engineering, 14(2), 1785–1789.

    Google Scholar 

  15. Metin, B. (2012). Canonical inductor simulators with grounded capacitors using DCCII. International Journal of Electronics, 99(7), 1027–1035. https://doi.org/10.1080/00207217.2011.639274

    Article  Google Scholar 

  16. Kaçar, F. (2010). New lossless inductance simulators realization using a minimum active and passive components. Microelectronics Journal, 41(2–3), 109–113. https://doi.org/10.1016/j.mejo.2010.01.001

    Article  Google Scholar 

  17. Pathak, J. K., Singh, A. K., & Senani, R. (2016). New canonic lossy inductor using a single CDBA and its application. International Journal of Electronics, 103(1), 1–13. https://doi.org/10.1080/00207217.2015.1020884

    Article  Google Scholar 

  18. Keskin, A. Ü., & Hancioglu, E. (2005). CDBA-based synthetic floating inductance circuits with electronic tuning properties. ETRI Journal, 27(2), 239–242. https://doi.org/10.4218/etrij.05.0204.0055

    Article  Google Scholar 

  19. Abuelma’Atti, M. T., & Dhar, S. K. (2016). CFOA-based floating negative inductance, positive frequency dependent resistance and resistance-controlled capacitance and resistance emulator. In International conference on electronics, information, and communications, ICEIC 2016, (pp. 3–5). https://doi.org/10.1109/ELINFOCOM.2016.7562980.

  20. Bhaskar, D. R., & Senani, R. (2013). Simulation of a floating inductance: A new two-CFOA-based configuration. Proceedings of International Conference on Computational Intelligence, Modelling and Simulation. https://doi.org/10.1109/CIMSim.2013.67

    Article  Google Scholar 

  21. Basak, M. E., & Kacar, F. (2018). Lossy/lossless grounded inductance simulators using current feedback operational amplifier (CFOA). Istanbul University - Journal of Electrical & Electronics Engineering, 18(1), 95–99. https://doi.org/10.5152/iujeee.2018.1815

    Article  Google Scholar 

  22. Senani, R., & Bhaskar, D. R. (2012). New lossy/loss-less synthetic floating inductance configuration realized with only two CFOAs. Analog Integrated Circuits and Signal Processing, 73(3), 981–987. https://doi.org/10.1007/s10470-012-9897-5

    Article  Google Scholar 

  23. Yuce, E., & Minaei, S. (2008). A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(1), 266–275. https://doi.org/10.1109/TCSI.2007.913689

    Article  MathSciNet  Google Scholar 

  24. Kaçar, F., & Kuntman, H. (2011). CFOA-based lossless and lossy inductance simulators. Radioengineering, 20(3), 627–631.

    Google Scholar 

  25. Abuelma’atti, M. T., Dhar, S. K., & Khalifa, Z. J. (2017). New two-CFOA-based floating immittance simulators. Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-017-0956-9

    Article  Google Scholar 

  26. Said, L. A., Madian, A. H., Ismail, M. H., & Soliman, A. M. (2015). Current feedback operational amplifier (CFOA) based programmable lossless floating inductor realization. In ICET 2014—2nd international conference on engineering and technology. https://doi.org/10.1109/ICEngTechnol.2014.7016778.

  27. Prasad, D., Bhaskar, D. R., & Singh, A. K. (2010). New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers. Radioengineering, 19(1), 194–198.

    Google Scholar 

  28. Koton, J., Herencsar, N., & Venclovsky, M. (2015). History, progress and new results in synthetic passive element design employing CFTAs. International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems. https://doi.org/10.11601/ijates.v4i1.113.

  29. Yeşil, A., Kaçar, F., & Gürkan, K. (2014). Lossless grounded inductance simulator employing single VDBA and its experimental band-pass filter application. AEU - International Journal of Electronics and Communications, 68(2), 143–150. https://doi.org/10.1016/j.aeue.2013.07.016

    Article  Google Scholar 

  30. Yesil, A., & Kacar, F. (2016). VDBA-based lossless and lossy inductance simulators and its filter applications. In 2016 24th signal processing and communication application conference (SIU), (Dxccii), (pp. 909–912). https://doi.org/10.1109/SIU.2016.7495888.

  31. Channumsin, O., Pimpol, J., Thongsopa, C., & Tangsrirat, W. (2015). VDBA-based floating inductance simulator with a grounded capacitor. In 2015 7th international conference on information technology and electrical engineering (ICITEE) (pp. 114–117). IEEE. https://doi.org/10.1109/ICITEED.2015.7408924.

  32. Prasad, D., Bhaskar, D. R., & Pushkar, K. L. (2011). Realization of new electronically controllable grounded and floating simulated inductance circuits using voltage differencing differential input buffered amplifiers. Active and Passive Electronic Components. https://doi.org/10.1155/2011/101432

    Article  Google Scholar 

  33. Abaci, A., & Yuce, E. (2017). Modified DVCC based quadrature oscillator and lossless grounded inductor simulator using grounded capacitor(s). AEU - International Journal of Electronics and Communications, 76, 86–96. https://doi.org/10.1016/j.aeue.2017.03.023

    Article  Google Scholar 

  34. Çam, U., Çiçekolu, O., & Kuntman, H. (2001). Novel lossless floating immitance simulator employing only two FTFNs. Analog Integrated Circuits and Signal Processing, 29(3), 233–235. https://doi.org/10.1023/A:1011221716078

    Article  Google Scholar 

  35. Konal, M., & Kacar, F. (2022). Grounded inductance simulator realization with single VDDDA. Analog Integrated Circuits and Signal Processing, 110(2), 279–288. https://doi.org/10.1007/s10470-021-01957-1

    Article  Google Scholar 

  36. Khan, I. A., & Ahmed, M. T. (1986). OTA-based integrable voltage/current-controlled ideal C-multiplier. Electronics Letters, 22(7), 365. https://doi.org/10.1049/el:19860248

    Article  Google Scholar 

  37. Tang, Y., Ismail, M., & Bibyk, S. (2003). Adaptive Miller capacitor multiplier for compact on-chip PLL filter. Electronics Letters, 39(1), 43. https://doi.org/10.1049/el:20030086

    Article  Google Scholar 

  38. Ayten, U. E., Sagbas, M., Herencsar, N., & Koton, J. (2012). Novel floating general element simulators using CBTA. Radioengineering, 21(1), 11–19.

    Google Scholar 

  39. Jantakun, A. (2015). A simple grounded FDNR and capacitance simulator based-on CCTA. AEU - International Journal of Electronics and Communications, 69(6), 950–957. https://doi.org/10.1016/j.aeue.2015.03.002

    Article  Google Scholar 

  40. Biolek, D., Vavra, J., & Keskin, A. Ü. (2019). CDTA-based capacitance multipliers. Circuits, Systems, and Signal Processing, 38(4), 1466–1481. https://doi.org/10.1007/s00034-018-0929-y

    Article  Google Scholar 

  41. Prommee, P., & Somdunyakanok, M. (2011). CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. AEU - International Journal of Electronics and Communications, 65(1), 1–8. https://doi.org/10.1016/j.aeue.2009.12.002

    Article  Google Scholar 

  42. Li, Y. (2012). A series of new circuits based on CFTAs. AEU - International Journal of Electronics and Communications, 66(7), 587–592. https://doi.org/10.1016/j.aeue.2011.11.011

    Article  Google Scholar 

  43. Özer, E. (2021). Electronically tunable CFTA based positive and negative grounded capacitance multipliers. AEU - International Journal of Electronics and Communications, 134, 153685. https://doi.org/10.1016/j.aeue.2021.153685

    Article  Google Scholar 

  44. Özer, E., Başak, M. E., & Kaçar, F. (2020). Realizations of lossy and lossless capacitance multiplier using CFOAs. AEU - International Journal of Electronics and Communications, 127, 153444. https://doi.org/10.1016/j.aeue.2020.153444

    Article  Google Scholar 

  45. Alpaslan, H. (2017). DVCC-based floating capacitance multiplier design. Turkish Journal of Electrical Engineering & Computer Sciences, 25(2), 1334–1345. https://doi.org/10.3906/elk-1509-112

    Article  Google Scholar 

  46. Yuce, E. (2010). A novel floating simulation topology composed of only grounded passive components. International Journal of Electronics, 97(3), 249–262. https://doi.org/10.1080/00207210903061907

    Article  Google Scholar 

  47. Tangsrirat, W. (2013). Floating simulator with a single DVCCTA. Indian Journal of Engineering and Materials Sciences, 20(2), 79–86.

    Google Scholar 

  48. Lahiri, A. (2010). DO-CCII based generalised impedance convertor simulates floating inductance, capacitance multiplier and FDNR. Australian Journal of Electrical and Electronics Engineering, 7(1), 15–20. https://doi.org/10.1080/1448837X.2010.11464253

    Article  Google Scholar 

  49. Minaei, S., Yuce, E., & Cicekoglu, O. (2006). A versatile active circuit for realising floating inductance, capacitance, FDNR and admittance converter. Analog Integrated Circuits and Signal Processing, 47(2), 199–202. https://doi.org/10.1007/s10470-006-4079-y

    Article  Google Scholar 

  50. Abuelma’Atti, M. T., & Tasadduq, N. A. (1999). Electronically tunable capacitance multiplier and frequency-dependent negative-resistance simulator using the current-controlled current conveyor. Microelectronics Journal, 30(9), 869–873. https://doi.org/10.1016/S0026-2692(99)00025-7

    Article  Google Scholar 

  51. Alpaslan, H., & Yuce, E. (2011). Bandwidth expansion methods of inductance simulator circuits and voltage-mode biquads. Journal of Circuits, Systems and Computers, 20(3), 557–572. https://doi.org/10.1142/S0218126611007451

    Article  Google Scholar 

  52. Yuce, E. (2006). On the realization of the floating simulators using only grounded passive components. Analog Integrated Circuits and Signal Processing, 49(2), 161–166. https://doi.org/10.1007/s10470-006-9351-7

    Article  Google Scholar 

  53. Saad, R. A., & Soliman, A. M. (2010). On the systematic synthesis of CCII-based floating simulators. International Journal of Circuit Theory and Applications, 38(2010), 935–967. https://doi.org/10.1002/cta

    Article  MATH  Google Scholar 

  54. Khan, A. A., Bimal, S., Dey, K. K., & Roy, S. S. (2002). Current conveyor based R- and C- multiplier circuits. AEU - International Journal of Electronics and Communications, 56(5), 312–316.

    Article  Google Scholar 

  55. Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electrical Engineering, 88(6), 519–525. https://doi.org/10.1007/s00202-005-0311-5

    Article  Google Scholar 

  56. Yuce, E. (2006). Floating inductance, FDNR and capacitance simulation circuit employing only grounded passive elements. International Journal of Electronics, 93(10), 679–688. https://doi.org/10.1080/00207210600750208

    Article  Google Scholar 

  57. Yesil, A., Yuce, E., & Minaei, S. (2017). Grounded capacitance multipliers based on active elements. AEU - International Journal of Electronics and Communications, 79, 243–249. https://doi.org/10.1016/j.aeue.2017.06.006

    Article  Google Scholar 

  58. Al-Absi, M. A., & Al-Khulaifi, A. A. (2019). A new floating and tunable capacitance multiplier with large multiplication factor. IEEE Access, 7, 120076–120081. https://doi.org/10.1109/ACCESS.2019.2936800

    Article  Google Scholar 

  59. Al-Absi, M. A., & Abulema’atti, M. T. (2019). A tunable floating impedance multiplier. Arabian Journal for Science and Engineering, 44(8), 7085–7089. https://doi.org/10.1007/s13369-019-03792-z

    Article  Google Scholar 

  60. De Marcellis, A., Ferri, G., Guerrini, N. C., Scotti, G., Stornelli, V., & Trifiletti, A. (2009). A novel low-voltage low-power fully differential voltage and current gained CCII for floating impedance simulations. Microelectronics Journal, 40(1), 20–25. https://doi.org/10.1016/j.mejo.2008.08.014

    Article  Google Scholar 

  61. Myderrizi, I., & Zeki, A. (2014). Electronically tunable DXCCII-based grounded capacitance multiplier. AEU - International Journal of Electronics and Communications, 68(9), 899–906. https://doi.org/10.1016/j.aeue.2014.04.013

    Article  Google Scholar 

  62. Fabre, A. (1992). Gyrator implementation from commercially available transimpedance operational amplifiers. Electronics Letters, 28(3), 263–264. https://doi.org/10.1049/el:19920162

    Article  Google Scholar 

  63. Senani, R. (1998). Realization of a class of analog signal signal processing/signal generation circuits: Novel configurations using current feddback Op-amps. Frequenz, 52, 9–10.

    Article  Google Scholar 

  64. Toker, A., Çiçekoǧlu, O., & Kuntman, H. (1999). New active gyrator circuit suitable for frequency-dependent negative resistor implementation. Microelectronics Journal, 30(1), 59–62. https://doi.org/10.1016/S0026-2692(98)00086-X

    Article  Google Scholar 

  65. Lahiri, A., & Gupta, M. (2011). Realizations of grounded negative capacitance using CFOAs. Circuits, Systems, and Signal Processing, 30(1), 143–155. https://doi.org/10.1007/s00034-010-9215-3

    Article  MATH  Google Scholar 

  66. Abuelma’atti, M. T. (2012). New grounded immittance function simulators using single current feedback operational amplifier. Analog Integrated Circuits and Signal Processing, 71(1), 95–100. https://doi.org/10.1007/s10470-011-9742-2

    Article  Google Scholar 

  67. Abuelma’atti, M. T., & Dhar, S. K. (2016). New CFOA-based floating immittance emulators. International Journal of Electronics, 103(12), 1984–1997. https://doi.org/10.1080/00207217.2016.1138544

    Article  Google Scholar 

  68. Verma, R., Pandey, N., & Pandey, R. (2019). Novel CFOA based capacitance multiplier and its application. AEU - International Journal of Electronics and Communications, 107, 192–198. https://doi.org/10.1016/j.aeue.2019.05.010

    Article  Google Scholar 

  69. Dogan, M., & Yuce, E. (2020). A new CFOA based grounded capacitance multiplier. AEU - International Journal of Electronics and Communications, 115, 153034. https://doi.org/10.1016/j.aeue.2019.153034

    Article  Google Scholar 

  70. Yucehan, T., & Yuce, E. (2021). A new grounded capacitance multiplier using a single ICFOA and a grounded capacitor. IEEE Transactions on Circuits and Systems II: Express Briefs, 7747(c), 1–1. https://doi.org/10.1109/TCSII.2021.3102118

    Article  Google Scholar 

  71. Stornelli, V., Safari, L., Barile, G., & Ferri, G. (2021). A new VCII based grounded positive/negative capacitance multiplier. AEU - International Journal of Electronics and Communications, 137, 153793. https://doi.org/10.1016/j.aeue.2021.153793

    Article  Google Scholar 

  72. Tangsrirat, W., Channumsin, O., & Pimpol, J. (2020). Electronically adjustable capacitance multiplier circuit with a single voltage differencing gain amplifier (VDGA). Informacije MIDEM - Journal of Microelectronics, Electronic Components and Materials, 49(4), 211–217. https://doi.org/10.33180/InfMIDEM2019.403

    Article  Google Scholar 

  73. Prasad, D., Bhaskar, D. R. R., & Singh, A. K. K. (2009). Universal current-mode biquad filter using dual output current differencing transconductance amplifier. AEUE - International Journal of Electronics and Communications, 63(6), 497–501. https://doi.org/10.1016/j.aeue.2008.02.012

    Article  Google Scholar 

  74. Yesil, A., Kacar, F., & Minaei, S. (2016). Electronically controllable bandpass filters with high quality factor and reduced capacitor value: An additional approach. AEUE - International Journal of Electronics and Communications, 70(7), 936–943. https://doi.org/10.1016/j.aeue.2016.04.009

    Article  Google Scholar 

  75. Herencsár, N., Vrba, K., Koton, J., & Lahiri, A. (2010). Realisations of single-resistance-controlled quadrature oscillators using a generalised current follower transconductance amplifier and a unity-gain voltage-follower. International Journal of Electronics, 97(8), 897–906. https://doi.org/10.1080/00207211003733320

    Article  Google Scholar 

  76. Sotner, R., Jerabek, J., Dostal, T., & Vrba, K. (2016). Z-copy voltage controlled current follower differential input transconductance amplifier in controllable biquadratic band-pass filter. Elektronika ir Elektrotechnika, 22(4), 32–36. https://doi.org/10.5755/j01.eie.22.4.15911

    Article  Google Scholar 

  77. Kumari, S., & Gupta, M. (2017). Design and analysis of high transconductance current follower transconductance amplifier (CFTA) and its applications. Analog Integrated Circuits and Signal Processing, 93(3), 489–506. https://doi.org/10.1007/s10470-017-1036-x

    Article  Google Scholar 

  78. Herencsar, N., Koton, J., & Vrba, K. (2010). CFTA-based active-C grounded positive inductance simulator and its application. Elektrorevue, 1(1), 24–27.

    Google Scholar 

  79. Herencsar, N., Lahiri, A., & Koton, J. (2012). New floating lossless inductance simulator using Z-copy current follower transconductance amplifiers. In Radioelektronika (RADIOELEKTRONIKA) 22nd international conference, 1–4. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6207658.

  80. Herencsar, N., Koton, J., Vrba, K., & Lahiri, A. (2010). Floating simulators based on current follower transconductance amplifiers (CFTAs). In European conference of systems, ECS’10, European conference of circuits technology and devices, ECCTD’10, European conference of communications, ECCOM’10, ECCS’10, (January), 22–26.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Emin Başak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Başak, M.E., Özer, E. Electronically tunable grounded inductance simulators and capacitor multipliers realization by using single Current Follower Transconductance Amplifier (CFTA). Analog Integr Circ Sig Process 112, 401–415 (2022). https://doi.org/10.1007/s10470-022-02049-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02049-4

Keywords

Navigation