Skip to main content
Log in

Optimal Nonlinear Signal Approximations Based on Piecewise Constant Functions

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We provide here an optimal method of approximating a signal by piecewise constant functions. To this end, we minimize over the signal subdomains a fidelity term between the signal and its corresponding piecewise approximations; subdomains being determined by the number of approximations samples used for. An optimal recursive relationship is then obtained and proven, which helps us to derive the proposed approximation algorithm. The complexity of the algorithm is O(\(\hbox {MN}^2\)), where N is the number of samples of the processed signal and M is the number of piecewise constant approximation functions. There are different techniques to approximate a signal using piecewise constant functions, wavelet decomposition is one of them by means of a Haar wavelet. Our approach is then compared to linear and nonlinear wavelet-based approximations, and both qualitative and quantitative results are provided on various tested signals, showing the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. For \(f\in L^1(\varOmega )\), denote \(\int _\varOmega |Df| = \sup \left\{ \int _\varOmega f~\text {div}(\varphi )\mathrm {d}x;~\varphi =(\varphi _1,\varphi _2) \in C_0^1(\varOmega ,\mathbb {R}^2) \text { and } ||\varphi ||\le 1\right\} \), where \(C_0^1(\varOmega )\) is the space of continuously differential functions with compact support in \(\varOmega \), \(\text {div}(\varphi )=\dfrac{\partial \varphi _1}{\partial x_1}+\dfrac{\partial \varphi _2}{\partial x_2}\) and derivatives are taken in a distributional sense, \(||\varphi ||=||(\varphi _1^2+\varphi _2^2)^{1/2}||_{L^\infty (\varOmega )}\). BV(\(\varOmega \)) is the set of functions defined by \(BV(\varOmega ) = \left\{ f\in L^1(\varOmega ); ~\textit{s.t.}~\int _\varOmega |Df|<\infty \right\} \). See [1, 21, 26] for more details on BV spaces.

  2. \(W^s[0;~1]\) is the space of functions which are s times differentiable is the sense of Sobolev over the domain [0;  1]. A good review of Sobolev spaces can be found in [6].

References

  1. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (Oxford Mathematical Monographs) (Oxford University Press, Oxford, 2000)

  2. I.E. Auger, C.E. Lawrence, Algorithms for the optimal identification of segment neighborhoods. Bull. Math. Biol. 51(1), 39–54 (1989). https://doi.org/10.1007/bf02458835

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Bellman, R. Roth, Curve fitting by segmented straight lines. J. Am. Stat. Assoc. 64(327), 1079–1084 (1969). https://doi.org/10.1080/01621459.1969.10501038

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Blu, M. Unser, Quantitative Fourier analysis of approximation techniques: part I—interpolators and projectors. IEEE Trans. Signal Process. 47(10), 2783–2795 (1999)

    MathSciNet  MATH  Google Scholar 

  5. A. Bouchikhi, A. Boudraa, Multicomponent AM-FM signals analysis based on EMD-B-splines ESA. Signal Process. 92(9), 2214–2228 (2012)

    Google Scholar 

  6. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, Berlin, 2011)

    MATH  Google Scholar 

  7. J.D. Bruce, Optimum quantization. Technical report, Research Laboratory of Electronics. MIT (1965)

  8. A.P. Calderón, Intermediate spaces and interpolation the complex method. Stud. Math. 24, 113–190 (1964)

    MathSciNet  MATH  Google Scholar 

  9. F. Chaplais, Generalization of the interaction between Haar approximation and polynomial operators to higher order methods. Anal. Theory Appl. Anal. 22(4), 301–318 (2006)

    MathSciNet  MATH  Google Scholar 

  10. D. Chen, S.B. Ko, A novel decimal logarithmic converter based on first-order polynomial approximation. Circuits Syst. Signal Process. 31(3), 1179–1190 (2012)

    MathSciNet  MATH  Google Scholar 

  11. R.J. Cintra, An integer approximation method for discrete sinusoidal transforms. Circuits Syst. Signal Process. 30(6), 1481 (2011)

    MathSciNet  MATH  Google Scholar 

  12. G. Cybenko, Approximation by superpositions of a sigmoidal functions. Math. Control Signals Syst. 2, 303–314 (1989)

    MathSciNet  MATH  Google Scholar 

  13. C. de Boor, A Practical Guide to Splines (Springer, Berlin, 1978)

    MATH  Google Scholar 

  14. R.A. DeVore, Nonlinear approximation. Acta Numerica 7, 51–150 (1998)

    MathSciNet  MATH  Google Scholar 

  15. R.A. DeVore, Multiscale, Nonlinear and Adaptive Approximation (Springer, Berlin, 2009), pp. 169–201. chap. 6

    Google Scholar 

  16. R.A. DeVore, G.G. Lorentz, Constructive Approximation (Springer, Heidelberg, 1993), pp. 354–389. chap. 12

    MATH  Google Scholar 

  17. S. Dhabu, A.P. Vinod, A new time-domain approach for the design of variable FIR filters using the spectral parameter approximation technique. Circuits Syst. Signal Process. 36(5), 2154–2165 (2017)

    Google Scholar 

  18. N. Dobigeon, J.Y. Tourneret, Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach. IEEE Trans. Signal Process. 55(4), 1251–1262 (2007)

    MathSciNet  MATH  Google Scholar 

  19. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    MathSciNet  MATH  Google Scholar 

  20. M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. Trans. Image Process. 15(12), 3736–3745 (2006)

    MathSciNet  Google Scholar 

  21. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics (CRC Press, Boca Raton, 1992)

    MATH  Google Scholar 

  22. Z. Fan, L. Guan, Approximate \(l0\)-penalized estimation of piecewise-constant signals on graphs, pp. 1–34. ArXiv arXiv:1703.01421v2 (2017)

  23. J. Frecon, N. Pustelnik, P. Abry, L. Condat, On-the-fly approximation of multivariate total variation minimization. IEEE Trans. Signal Process. 64(9), 2355–2364 (2016)

    MathSciNet  MATH  Google Scholar 

  24. J.H. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    MathSciNet  MATH  Google Scholar 

  25. A.J. Gibberd, J.D.B. Nelson, Regularized estimation of piecewise constant Gaussian graphical models: The group-fused graphical Lasso. J. Comput. Graph. Stat. 26(3), 623–634 (2017)

    MathSciNet  Google Scholar 

  26. E. Giusti, Minimal Surfaces and Functions of Bounded Variation (Birkhuser, Basel, 1994)

    MATH  Google Scholar 

  27. A. Grossmann, J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)

    MathSciNet  MATH  Google Scholar 

  28. E.M. Hamed, A.M. AbdelAty, L.A. Said, A.G. Radwan, Effect of different approximation techniques on fractional-order KHN filter design. Circuits Syst. Signal Process. 37, 1–31 (2018)

    Google Scholar 

  29. H.P. Hiriyannaiah, G.L. Bilbro, W.E. Snyder, R.C. Mann, Restoration of piecewise-constant images by mean-field annealing. J. Opt. Soci. Am. A 6(12), 1901–1912 (1989)

    Google Scholar 

  30. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. R. Soc. 454, 903–995 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Y. Isaac, Q. Barthélemy, C. Gouy-Pailler, M. Sebag, J. Atif, Multi-dimensional signal approximation with sparse structured priors using split Bregman iterations. Signal Process. 130, 389–402 (2017)

    Google Scholar 

  32. B. Jackson, J. Scargle, D. Barnes, S. Arabhi, A. Alt, P. Gioumousis, E. Gwin, P. San, L. Tan, T.T. Tsai, An algorithm for optimal partitioning of data on an interval. IEEE Signal Process. Lett. 12(2), 105–108 (2005). https://doi.org/10.1109/lsp.2001.838216

    Article  Google Scholar 

  33. A.C. Jensen, A.S. Solberg, Fast hyperspectral feature reduction using piecewise constant function approximations. IEEE Geosci. Remote Sens. Lett. 4(4), 547–551 (2007)

    Google Scholar 

  34. J.P. Kahane, Teoria constructiva de functiones. Course notes (University of Buenos Aires, Viamonte, 1961)

    Google Scholar 

  35. J. Kang, H. Jung, H.N. Lee, K. Kim, One-dimensional piecewise-constant signal recovery via spike-and-slab approximate message-passing, in 48th Asilomar Conference on Signals, Systems and Computers (Pacific Grove, CA, USA, 2014), pp. 1458–1462

  36. H. Konno, T. Kuno, Best piecewise constant approximation of a function of single variable. Oper. Res. Lett. 7(4), 205–210 (1988). https://doi.org/10.1016/0167-6377(88)90030-2

    Article  MathSciNet  MATH  Google Scholar 

  37. S.C. Kramer, H.W. Sorenson, Recursive Bayesian estimation using piece-wise constant approximations. Automatica 24(6), 789–801 (1988)

    MathSciNet  MATH  Google Scholar 

  38. B.I. Kvasov, Methods of Shape Preserving Spline Approximations (World Scientific, Singapore, 2000)

    MATH  Google Scholar 

  39. F. Leulmi, Y. Ferdi, Improved digital rational approximation of the operator \(s^{\alpha }\) using second-order s-to-z transform and signal modeling. Circuits Syst. Signal Process. 34(6), 1869–1891 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Q. Li, B. Shen, Z. Wang, F.E. Alsaadi, A sampled-data approach to distributed h \(\infty \) resilient state estimation for a class of nonlinear time-delay systems over sensor networks. J. Franklin Inst. 354(15), 7139–7157 (2017). https://doi.org/10.1016/j.jfranklin.2017.08.036

    Article  MathSciNet  MATH  Google Scholar 

  41. Q. Li, B. Shen, Z. Wang, F.E. Alsaadi, An event-triggered approach to distributed h\(\infty \) state estimation for state-saturated systems with randomly occurring mixed delays. J. Franklin Inst. 355(6), 3104–3121 (2018). https://doi.org/10.1016/j.jfranklin.2018.02.007

    Article  MathSciNet  MATH  Google Scholar 

  42. M.A. Little, N.S. Jones, Generalized methods and solvers for noise removal from piecewise constant signals. II. New methods. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2135), 3115–3140 (2011). https://doi.org/10.1098/rspa.2010.0674

    Article  MATH  Google Scholar 

  43. G. Makkena, M. Srinivas, Nonlinear sequence transformation-based continuous-time wavelet filter approximation. Circuits Syst. Signal Process. 37(3), 965–983 (2018)

    MathSciNet  MATH  Google Scholar 

  44. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, Cambridge, 1999)

    MATH  Google Scholar 

  45. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (Elsevier, Amsterdam, 2009)

    MATH  Google Scholar 

  46. S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    MATH  Google Scholar 

  47. R. Martin, W. Shen, Asymptotically optimal empirical Bayes inference in a piecewise constant sequence model. Technical Report arXiv:1712.03848v1 (2017)

  48. H. Min, W. Jia, X.F. Wang, Y. Zhao, Y.T. Luo, A polynomial piecewise constant approximation method based on dual constraint relaxation for segmenting images with intensity inhomogeneity. Pattern Recognit. 73, 15–32 (2018)

    Google Scholar 

  49. D.B. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    MathSciNet  MATH  Google Scholar 

  50. M. Nikolova, M.K. Ng, S. Zhang, W.K. Ching, Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1(1), 2–25 (2008)

    MathSciNet  MATH  Google Scholar 

  51. G. Ongie, S. Biswas, M. Jacob, Convex recovery of continuous domain piecewise constant images from nonuniform Fourier samples. IEEE Trans. Signal Process. 66(1), 236–250 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Y.C. Pati, R. Razaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in 27th Annual Asilomar Conference on Signals Systems and Computers, pp. 1–5 (1993)

  53. M.J.D. Powell, Approximation Theory and Methods (Cambridge University Press, Cambridge, 1981)

    MATH  Google Scholar 

  54. S. Qian, D. Chen, K. Chen, Signal approximation via data-adaptive normalized Gaussian functions and its applications for speech processing, in IEEE ICASSP, vol. 1, pp. 141–144. San Francisco, CA, USA (1992)

  55. S. Qian, D. Chen, Q. Yin, Adaptive chirplet based signal approximation, in IEEE ICASSP, pp. 1781–1784. Seattle, US (1998)

  56. S.D. Roy, A new Chebyshev-like low-pass filter approximation. Circuits Syst. Signal Process. 29(4), 629–636 (2010)

    MathSciNet  MATH  Google Scholar 

  57. R. Rubinstein, M. Zibulevsky, M. Elad, Double sparsity: Learning sparse dictionaries for sparse signal approximation. Trans. Signal Process. 58(3), 1553–1564 (2010)

    MathSciNet  MATH  Google Scholar 

  58. J.A. Sanders, F. Verhuls, Averaging Methods in Nonlinear Dynamical Systems (Springer, Berlin, 1985)

    Google Scholar 

  59. I. Selesnick, M. Farshchian, Sparse signal approximation via non-separable regularization. IEEE Trans. Signal Process. 65(10), 1–15 (2017)

    MATH  Google Scholar 

  60. J.G. Serra, M. Testa, R. Molina, A.K. Katsaggelos, Bayesian K-SVD using fast variational inference. IEEE Trans. Image Process. 26(7), 3344–3359 (2017)

    MathSciNet  MATH  Google Scholar 

  61. J. Shah, I. Qureshi, Y. Deng, K. Kadir, Reconstruction of sparse signals and compressively sampled images based on smooth \(l1\)-norm approximation. J. Signal Process. Syst. 88, 333–344 (2017)

    Google Scholar 

  62. R. Tibshirani, Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  63. M. Unser, A. Aldroubi, M. Eden, B-spline signal processing: part I—theory. Trans. Signal Process. 41(2), 821–832 (1993)

    MATH  Google Scholar 

  64. M. Unser, A. Aldroubi, M. Eden, B-spline signal processing: part II—efficient design and applications. Trans. Signal Process. 41(2), 834–848 (1993)

    MATH  Google Scholar 

  65. M. Unser, P.D. Tafti, Stochastic models for sparse and piecewise-smooth signals. IEEE Trans. Signal Process. 59(3), 989–1006 (2011)

    MathSciNet  MATH  Google Scholar 

  66. F. van Belzen, S. Weiland, Reconstruction and approximation of multidimensional signals described by proper orthogonal decompositions. IEEE Trans. Signal Process. 56(2), 576–587 (2008)

    MathSciNet  MATH  Google Scholar 

  67. S. Vovk, V. Borulko, Determination of amplitude levels of the piecewise constant signal by using polynomial approximation. Radioelectron. Commun. Syst. 60(3), 141–153 (2017)

    Google Scholar 

  68. B. Weng, K.E. Barner, Optimal signal reconstruction using the empirical mode decomposition. EURASIP J. Adv. Signal Process. 2008, 1–12 (2008)

    MATH  Google Scholar 

  69. S.J. Wright, R.D. Novak, M.A.T. Figueiredo, Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    MathSciNet  MATH  Google Scholar 

  70. X. Zhou, J. Liu, X. Wan, W. Yu, Piecewise-constant and low-rank approximation for identification of recurrent copy number variations. Bioinformatics 30(14), 1943–1949 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Surya Prasath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diop, E.H.S., Boudraa, AO. & Prasath, V.B.S. Optimal Nonlinear Signal Approximations Based on Piecewise Constant Functions. Circuits Syst Signal Process 39, 2673–2694 (2020). https://doi.org/10.1007/s00034-019-01285-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01285-w

Keywords

Navigation