Skip to main content

Results on Non-linear Approximation for Wavelet Bases in Weighted Function Spaces

  • Chapter
  • First Online:
New Trends in Applied Harmonic Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1040 Accesses

Abstract

The material in this paper comes from various conferences given by the authors. We start with a brief survey of harmonic analysis methods in linear and non-linear approximation related to signal compression. Special emphasis is made on wavelet-based methods and some of the mathematical theory of wavelets behind them. We also present recent results of the authors concerning non-linear approximation in sequence spaces and the validity of Jackson and Bernstein inequalities in general smoothness spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.A Aimar, A.L. Bernardis, and F.J. Martín-Reys, Multiresolution Approximation and Wavelet Bases of Weighted L p Spaces, J. Fourier Anal. and Appl. 9, n 5, (2003), 497–510.

    Google Scholar 

  2. A. Almeida, Wavelet bases in generalized Besov spaces, J. Math. Anal. Appl. 304 (2005) 198–211.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Barnsley and L. Hurd, Fractal image compression. AK Peters Ltd. Wellesley, Massachusetts (1993).

    MATH  Google Scholar 

  4. C. Bennet, and R. C. Sharpley, Interpolation of Operators, Pure and Appl. Math. vol. 129, Academic Press, Orlando, Fl, 1988.

    Google Scholar 

  5. J. Bergh and J. Löfström, Interpolation spaces. An introduction, No. 223, Springer-Verlag, Berlin-New York, 1976.

    Google Scholar 

  6. M. Bownik, Atomic and molecular decompositions of anisotropic Besov spaces, Math. Z. 250, (2005), 539–571. DOI: 10.1007/s00209-005-0765-1

    Google Scholar 

  7. M. Bownik, and K.-P. Ho, Atomic and molecular decompositions of anisotropic Triebel-Lizorkin Spaces, Trans. Amer. Math. Soc., 358, (2006), 1469–1510.

    Article  MathSciNet  MATH  Google Scholar 

  8. H.-Q. Bui, Weighted Besov and Triebel spaces: interpolation by the real method, Hiroshima Math. J., 12(1982), no. 3, 381–605.

    Google Scholar 

  9. M. J. Carro, J. Raposo, and J. Soria, Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities, Mem. Amr. Math. Soc., no. 877, 187(2007).

    Google Scholar 

  10. E. W. Cheney, “Introduction to Approximation Theory”, McGraw-Hill, 1966.

    MATH  Google Scholar 

  11. A. Chambolle, R. DeVore, Nam-Yong Lee and B.J. Lucier, “Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage”. IEEE Trans. Image Processing 7 (3), 319–335, March 1998. Available at http://www.math.purdue.edu/ \( \sim \) lucier.

  12. F. Cobos and D. Fernandez, Hardy-Sobolev spaces and Besov spaces with a function parameter, in: M. Cwikel, J. Peetre, J. Shager, H. Wallin (Eds.), Function Spaces and Applications, Lund, 1986, in: Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 158–170.

    Google Scholar 

  13. D. Cruz-Uribe, J.M Martell, and C. pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications, Vol. 215, (2011).

    Google Scholar 

  14. J. Garcia-Cuerva, and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland Mathematical Studies 116, Elsevier Sciences Publishers, 1985.

    MATH  Google Scholar 

  15. I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 42, (1988), 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in applied Maths., Philadelphia, Pennsylvania, 61, 1992.

    Google Scholar 

  17. S.J. Dilworth, N.J. Kalton, D. Kutzarova and V.N. Temlyakov, The Thresholding Greedy Algorithm, Greedy Bases, and Duality, Constr. Approx., 19, (2003),575–597.

    Article  MathSciNet  MATH  Google Scholar 

  18. R.A. DeVore, Nonlinear Approximation. In Acta Numerica 7, Cambridge University Press, 1998, 51–151.

    Google Scholar 

  19. R.A. DeVore, and V.N. Temlyakov, Some remarks on greedy algorithms, Adv. Comp. Math. 5, (2-5)(1996), 113–187.

    Google Scholar 

  20. M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, 79 (1991).

    Book  MATH  Google Scholar 

  21. M. Frazier, and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J., 34, (1985), 777–799.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. García-Cuerva, and K. S. Kazarian, Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces, Studia Math., volume 109, no. 3, (1994), 255–279.

    Google Scholar 

  23. J. García-Cuerva, and J. Martell, Wavelet characterization of weighted spaces, J. Geom. Anal. 11, no. 2,(2001), 241–262.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Garrigós and E. Hernández, Sharp Jackson and Bernstein Inequalities for N-term Approximation in Sequence Spaces with Applications, Ind. Univ. Math. Journal, 53 (6) (2004), 1741–1764.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Garrigós, E. Hernández, and J.M. Martell, Wavelets, Orlicz spaces and greedy bases, Appl. Compt. Harmon. Anal., 24, (2008), 70–93.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Garrigós, E. Hernández, and M. Natividade, Democracy Functions and Optimal Embeddings for Approximation Spaces, Advances in Comp. Math.37, (2012), 255–283. DOI 10.1007/s10444-011-9197-0

    Google Scholar 

  27. R. Gribonval, M. Nielsen, Some remarks on non-linear approximation with Schauder bases, East. J. of Approximation, 7(2), (2001), 1–19.

    MathSciNet  MATH  Google Scholar 

  28. A. Haar, Zur theorie der orthogonalen funktionen systeme, Math. Ann., 69, (1910), 331–371.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Haroske, and H. Triebel, Wavelet bases and entropy numbers in weighted function spaces, Math. Nachr. 278, no 1-2, (2005), 108–132.

    Google Scholar 

  30. E. Hernández and G. Weiss, A First Course on Wavelets, CRC Press, Boca Raton, FL, (1996).

    Book  MATH  Google Scholar 

  31. C. Hsiao, B. Jawerth, B.J. Lucier and X.M. Yu, Near optimal compression of almost optimal wavelet expansions. Wavelets: mathematics and applications, 425–446, Stud. Adv. Math., CRC, Boca Raton, FL, 1994.

    Google Scholar 

  32. M. Izuki, and Y. Sawano, Wavelet bases in the weighted Besov spaces and Triebel-Lizorkin spaces with A p loc -weights, Journal of Approx. Theory, 161, (2009), 656–673.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Kamont and V.N. Temlyakov, Greedy approximation and the multivariate Haar system, Studia Math, 161 (3), (2004), 199–223.

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Kazarian and V.N. Temlyakov, Greedy bases in L p spaces, Trudy MIAN, 280 (2013), 188–197. English translation in Proc. Steklov Inst. Math, 280 (2013), 181–190.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Kerkyacharian and D. Picard, Entropy, universal coding, approximation, and bases properties, Constr. Approx. 20 (2004), 1–37. DOI:10.1007/s00365-003-0556-z

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Kerkyacharian and D. Picard, Nonlinear Approximation and Muckenhoupt Weights, Constr. Approx. 24, (2006), 123–156 DOI: 10.1007/s00365-005-0618-5.

    Article  MathSciNet  MATH  Google Scholar 

  37. V. Kokilashvili, and M. Krebec, Weighted Inequalities in Lorentz and Orlicz Spaces, Word Scientific, Singapore, 1991.

    Book  Google Scholar 

  38. S.V. Konyagin and V.N. Temlyakov, A remark on greedy approximation in Banach spaces, East. J. Approx. 5 (1999), 365–379.

    MathSciNet  MATH  Google Scholar 

  39. S. Krein, J. Petunin, and E. Semenov, Interpolation of Linear operators, Translations Math. Monographs, vol. 55, Amer. Math. Soc. Providence, RI, 1982.

    Google Scholar 

  40. P.G. Lemarié, and Y. Meyer, Ondelettes et bases Hilbertiannes, Rev. Mat. Iberoamericana, 2, (1986), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Kyriazis, Multilevel characterization of anisotropic function spaces, SIAM J. Math. Anal. 36, (2004), 441–462.

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Mallat, A wavelet tour of signal processing. Academic Press Inc., San Diego, Second Edition 1999.

    MATH  Google Scholar 

  43. C. Merucci, Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces. Interpolation spaces and allied topics in analysis, Lecture Notes in Math., 1070, Springer Berlin, (1984), 183–201.

    Google Scholar 

  44. Y. Meyer, Ondelettes et operateurs Vols 1 and 2, Hermann, 1990. [English translation: Wavelet and operators, Cambridge University Press, 1992.]

    Google Scholar 

  45. F.G. Montenegro, Caracterización de espacios de Orlicz pesados a través de wavelets, Ph. D. Thesis, Universidad Nacional del Litoral, 2006

    Google Scholar 

  46. M. Natividade, Aproximación no lineal con bases de ondículas, 2010. Available in Spanish from: https://repositorio.uam.es/xmlui/handle/10486/4868

  47. M. Natividade, Best approximation with wavelets in weighted Orlicz spaces, Monatsh. Math. 164, no. 1, 87–114 (2011).

    Google Scholar 

  48. J. Peetre, New thoughts on Besov spaces, Math. Dept. Duke University, 1976.

    MATH  Google Scholar 

  49. L. Persson, Interpolation with a parameter function, Math. Scand. 59(1986) 199–222.

    MathSciNet  MATH  Google Scholar 

  50. S. Roudenko, Matrix-weighted Besov Spaces, Trans. Amer. Soc., 355(1),(2003),273–314.

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Roudenko, The Theory of Functions Spaces with Matrix Weights, Ph. D. Thesis, Department of Mathematics, Michigan State University, (2002).

    Google Scholar 

  52. S. B. Stechkin, On absolute convergence of orthogonal series, Dokl. Akad. Nauk SSSR 102 (1955), 37–40.

    MathSciNet  MATH  Google Scholar 

  53. V.N. Temlyakov, The best m -term approximation and greedy algorithms. Adv. Comput. Math. 8 (3), (1998), 249–265.

    Article  MathSciNet  MATH  Google Scholar 

  54. V.N. Temlyakov, Greedy Algorithm and m-Term Trigonometric Approximation, Constr. Approx., 14 (1998), 569–587.

    Article  MathSciNet  MATH  Google Scholar 

  55. V. N. Temlyakov, Nonlinear methods of approximation, Found. Comp. Math., 3 (1), (2003), 33–107.

    Article  MathSciNet  MATH  Google Scholar 

  56. V. N. Temlyakov, Greedy approximation. Acta Numer., vol. 17, pp. 235–409, Cambridge University Press (2008)

    Google Scholar 

  57. V.N. Temlyakov, Greedy approximation. Cambridge University Press, 2011.

    Book  MATH  Google Scholar 

  58. P. Wojtaszczyk, Wavelets as unconditional bases in \( L_{p}(R) \). J. Fourier Anal. Appl. 5 (1999), no. 1, 73–85.

    Article  MathSciNet  MATH  Google Scholar 

  59. P. Wojtaszczyk, On left democracy function. Funct. Approx. Comment. Math. Volume 50, Number 2 (2014), 207–214.

    Google Scholar 

Download references

Acknowledgements

The author “Eugenio Hernández” was supported by MINECO Grants MTM-2010-16518 and MTM-2013-40945-P. The author “Maria de Natividade” was supported by MCT-Angola and FCUAN-Angola.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hernández, E., de Natividade, M. (2016). Results on Non-linear Approximation for Wavelet Bases in Weighted Function Spaces. In: Aldroubi, A., Cabrelli, C., Jaffard, S., Molter, U. (eds) New Trends in Applied Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-27873-5_5

Download citation

Publish with us

Policies and ethics