Skip to main content
Log in

One-Bit Spectrum Sensing in Cognitive Radio Sensor Networks

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a spectrum sensing algorithm from one-bit measurements in a cognitive radio sensor network. A likelihood ratio test (LRT) for the one-bit spectrum sensing problem is derived. Different from the one-bit spectrum sensing research work in the literature, the signal is assumed to be a discrete random correlated Gaussian process, where the correlation is only available within immediate successive samples of the received signal. The employed model facilitates the design of a powerful detection criteria with measurable analytical performance. One-bit spectrum sensing criterion is derived for one sensor which is then generalized to multiple sensors. Performance of the detector is analyzed by obtaining closed-form formulas for the probability of false alarm and the probability of detection. The proposed one-bit LRT detector exhibits comparable performance to that of non-one-bit detectors (i.e., quadratic and energy detectors) with the lower computational complexity. Simulation results corroborate the theoretical findings and confirm the efficacy of the proposed detector in the context of highly correlated signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Ahmadfard, A. Jamshidi, A. Keshavarz-Haddad, Probabilistic spectrum sensing data falsification attack in cognitive radio networks. Signal Process. 137, 1–9 (2017)

    Article  Google Scholar 

  2. A. Ali, W. Hamouda, Advances on spectrum sensing for cognitive radio networks: theory and applications. IEEE Commun. Surv. Tutor. 19(2), 1277–1304 (2017)

    Article  Google Scholar 

  3. A. Ali, W. Hamouda, Low power wideband sensing for one-bit quantized cognitive radio systems. IEEE Wirel. Commun. Lett. 5(1), 16–19 (2016)

    Article  Google Scholar 

  4. A. Ali, W. Hamouda, Power efficient wideband spectrum sensing for cognitive radio systems. IEEE Trans. Veh. Technol. 67(4), 3269–3283 (2018)

    Article  Google Scholar 

  5. E.J. Candes, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  6. H. Chen, C.H. Vun, A feature-based compressive spectrum sensing technique for cognitive radio operation. Circuits Syst. Signal Process 37, 1287–1314 (2018)

    Article  MathSciNet  Google Scholar 

  7. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  8. S.M. Kay, Fundamentals of statistical signal processing: detection theory (Prentice Hall, New Jersey, 1998)

    Google Scholar 

  9. K. Khanikar, R. Sinha, R. Bhattacharjee, Incorporating primary user interference for enhanced spectrum sensing. IEEE Signal Process. Lett. 24(7), 1039–1043 (2017)

    Article  Google Scholar 

  10. E.G. Larsson, M. Skoglund, Cognitive radio in a frequency-planned environment: some basic limits. IEEE Trans. Wirel. Commun. 7(12), 4800–4806 (2008)

    Article  Google Scholar 

  11. S. MacDonald, D.C. Popescu, O. Popescu, Analyzing the performance of spectrum sensing in cognitive radio systems with dynamic primary user activity. IEEE Commun. Lett. 21(7), 2037–2040 (2017)

    Article  Google Scholar 

  12. J. Mitola, G.Q. Maguire, Cognitive radio: making software radios more personal. IEEE Personal Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  13. F. Moghimi, A. Nasri, R. Schober, Adaptive Lp-norm spectrum sensing for cognitive radio networks. IEEE Trans. Commun. 59(7), 1934–1945 (2011)

    Article  Google Scholar 

  14. H.V. Poor, An introduction to signal detection and estimation (Springer, New York, 1994)

    Book  Google Scholar 

  15. H. Qing, Y. Liu, G. Xie, J. Gao, Wideband spectrum sensing for cognitive radios: a multistage wiener filter perspective. IEEE Signal Process. Lett. 22(3), 332–335 (2015)

    Article  Google Scholar 

  16. Z. Quan et al., Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans. Signal Process. 57(3), 1128–1140 (2009)

    Article  MathSciNet  Google Scholar 

  17. F. Salahdine, N. Kaabouch, and H. El Ghazi, One-bit compressive sensing vs. multi-bit compressive sensing for cognitive radio networks, in IEEE International Conference on Industrial Technology (ICIT), pp. 20–22 (2018)

  18. K.C. Sriharipriya, K. Baskaran, Optimal number of cooperators in the cooperative spectrum sensing schemes. Circuits Syst. Signal Process 37, 1988–2000 (2018)

    Article  MathSciNet  Google Scholar 

  19. M.S. Stein, M. Faub, In a one-bit rush: low-latency wireless spectrum monitoring with binary sensor arrays, Arxiv (2018)

  20. H. Sun, A. Nallanathan, C. Wang, Y. Chen, Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel. Commun. 20(2), 74–81 (2013)

    Article  Google Scholar 

  21. A. Valehi, A. Razi, Maximizing energy efficiency of cognitive wireless sensor networks with constrained age of information. IEEE Trans. Cogn. Commun. Netw. 3(4), 643–654 (2017)

    Article  Google Scholar 

  22. J. Wang, Q. Guo, W.X. Zheng, Q. Wu, Robust cooperative spectrum sensing based on adaptive reputation and evidential reasoning theory in cognitive radio network. Circuits Syst. Signal Process. 37, 4455–4481 (2018)

    Article  Google Scholar 

  23. H. Zayyani, F. Haddadi, M. Korki, Double detector for sparse signal detection from one-bit compressed sensing measurements. IEEE Signal Process. Lett. 23(11), 1637–1641 (2016)

    Article  Google Scholar 

  24. Z. Zhang, X. Wen, H. Xu, L. Yuan, Sensing nodes selective fusion scheme of spectrum sensing in spectrum-heterogeneous cognitive wireless sensor networks. IEEE Sens. J. 18(1), 436–445 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Zayyani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculating \(\mathbb P(y_2|y_1,H_1)\)

We first calculate the four probabilities \(\mathbb P(y_2=1|y_1=1,H_1)= \mathrel {\mathop :} p\) , \( \mathbb P(y_2=0|y_1=1,H_1)=1-p\) , \(\mathbb P(y_2=1|y_1=0,H_1)=p\,'\) , and \( \mathbb P(y_2=0|y_1=0,H_1)=1-p\,'\). The probability \(p= \mathbb P (y_2=1|y_1=1,H_1)\) is equal to

$$\begin{aligned}&p = \mathbb P(w_2+s_2\geqslant 0|w_1+s_1\geqslant 0) \nonumber \\&\quad =\frac{\mathbb P(z_1 \geqslant 0, z_2 \geqslant 0)}{\mathbb P(z_1 \geqslant 0)} = 2 \, \mathbb P(z_1 \geqslant 0,z_2 \geqslant 0) \end{aligned}$$
(21)

where \(z_1=s_1+w_1\), \(z_2=s_2+w_2\), and \(p(z_1 \geqslant 0)=\frac{1}{2}\). To calculate \(p(z_1 \geqslant 0,z_2 \geqslant 0)\), note that \(z_1\) and \(z_2\) are correlated Gaussian random variables with covariance matrix \(\mathbf{C }\) with elements \(C_{11}=E(z^2_1)=\sigma ^2_s+\sigma ^2\), \(C_{12}=C_{21}=E(z_1z_2)=r\) and \(C_{22}=E(z^2_2)=\sigma ^2_s+\sigma ^2\). Therefore, joint probability density function (pdf) is \(f(z_1,z_2) = \frac{1}{2\pi \sqrt{\mathrm {det} (\mathbf{C })}} \exp {(-\frac{1}{2} \mathbf{z }\mathbf{C }^{-1} \mathbf{z }^ \text{ T })}\) where \(\mathbf{z }=[z_1 \; z_2]\). Hence, we have \(p=2\int _{0}^{+\infty }\int _{0}^{+\infty }f(z_1,z_2)dz_1dz_2\). To calculate the other probability \(p\,'\), we consider that \(p\,'= \mathbb P(y_2=1 | y_1=0 , H_1) = \frac{\mathbb P(y_2=1 , y_1=0 | H_1)}{ \mathbb P(y_1=0 | H_1)} = 2 \, \mathbb P(y_2=1 , y_1=0 | H_1) = 2(\frac{1}{2}- \frac{p}{2})=1-p\) which leads to (2).

Appendix B: Calculating \(\mu _0\) and \(\sigma ^2_0\)

We have \(\mu _0 = \sum _{i=1}^{n-1} \mathbb E \, \mathbb I(y_i = y_{i+1}|H_0)=\frac{1}{2}(n-1)\). Also, we have \(\sigma ^2_0 = \mathbb E(Y^2|H_0) - \mathbb E^2(Y|H_0)\) in which \( \mathbb E(Y|H_0) = \frac{1}{2}(n-1)\) and

$$\begin{aligned} \mathbb E(Y^2|H_0) = \sum _{i,i'} \mathbb E(\, \mathbb I(y_i = y_{i+1}) \, \mathbb I(y_{i'} = y_{i'+1}) | H_0) \end{aligned}$$
(22)

where the expectation is equal to

$$\begin{aligned} \mathbb P( \, (y_i = y_{i+1}) \wedge (y_{i'} = y_{i'+1}) | H_0) = {\left\{ \begin{array}{ll} \frac{1}{2}:&{} \quad i=i' \\ \frac{1}{4}:&{} \quad i \ne i' \end{array}\right. } \end{aligned}$$
(23)

Replacing (23) into (22) results in (8).

Appendix C: Calculating \(\mu _1\) and \(\sigma ^2_1\)

We have \(\mu _1 = \sum _{i=1}^ {n-1} \mathbb E \, \mathbb I( \, y_i = y_{i+1}|H_1) = \sum _{i=1}^ {n-1} \mathbb P( \, y_i = y_{i+1} |H_1)=2p(n-1)\). Also, we have \(\sigma ^2_1 = \mathbb E(Y^2|H_1) - \mathbb E^2(Y|H_1)\) in which \( \mathbb E(Y|H_1) = 2p(n-1)\) and

$$\begin{aligned} E(Y^2|H_1)=\sum _{i,i'} \mathbb E(\, \mathbb I(y_i = y_{i+1}) \, \mathbb I(y_{i'} = y_{i'+1}) | H_1) \end{aligned}$$
(24)

where the expectation is equal to

$$\begin{aligned}&\mathbb P( \, (y_i = y_{i+1}) \wedge (y_{i'} = y_{i'+1}) | H_1)\nonumber \\&= {\left\{ \begin{array}{ll} \mathbb P( \, y_i = y_{i+1} | H_1) = 2p :&{} \quad i=i' \\ \mathbb P( \, y_i = y_{i+1} | H_1)\mathbb P( \, y_{i'} = y_{i'+1} | H_1) = 4p^2: &{} \quad i \ne i' \end{array}\right. } \end{aligned}$$
(25)

Replacing (25) into (24) results in (11).

Appendix D: Calculating \(m_0\) and \(s^2_0\)

We have \(m_0= \sum _{i=1}^ {n-1} \sum _{k=1}^{N} \mathbb E \, \mathbb I(y_{ki} = y_{k,i+1} | H_0) = \frac{1}{2}(n-1)N\). Also, we have \(s^2_0 = \mathbb E (Y^2| H_0) - \mathbb E^2(Y| H_0)\) in which \( \mathbb E(Y|H_0) = \frac{1}{2} (n-1)N\) and

$$\begin{aligned} \mathbb E(Y^2|H_0) = \!\!\!\! \sum _{i,k,i'\! ,k'} \!\!\! \mathbb E(\, \mathbb I(y_{ki} = y_{k,i+1}) \, \mathbb I(y_{k'i'} = y_{k',i'+1}) | H_0) \end{aligned}$$
(26)

where the expectation is equal to

$$\begin{aligned} \mathbb P( \, (y_{ki} = y_{k,i+1}) \wedge (y_{k'i'} = y_{k',i'+1}) | H_0) = {\left\{ \begin{array}{ll} \frac{1}{2}:&{} \quad i=i' \wedge k = k' \\ \frac{1}{4}:&{} \quad i \ne i' \vee k \ne k' \end{array}\right. } \end{aligned}$$
(27)

Replacing (27) into (26) results in (17).

Appendix E: Calculating \(m_1\) and \(s^2_1\)

We have \(m_1 = \sum _{i=1}^{n-1} \sum _{k=1}^{N} \mathbb E \, \mathbb I(y_{ki} = y_{k,i+1} | H_1) = \sum _{i,k} \mathbb P (y_{ki} = y_{k,i+1} | H_1) = 2p(n-1)N\). Also, we have \(s^2_1 = \mathbb E(Y^2|H_1) - \mathbb E^2(Y|H_1)\) in which \( \mathbb E(Y|H_1) = 2p(n-1)N\) and

$$\begin{aligned} \mathbb E(Y^2|H_1) = \!\!\!\! \sum _{i,k,i',k'} \!\!\! \mathbb E(\, \mathbb I(y_{ki} = y_{k,i+1}) \, \mathbb I(y_{k'i'} = y_{k',i'+1}) | H_1) \end{aligned}$$
(28)

where the expectation is equal to

$$\begin{aligned} \begin{array}{l} \mathbb P( \, (y_{ki} = y_{k,i+1}) \wedge (y_{k'i'} = y_{k',i'+1}) | H_1) = \\ \mathbb I (i=i' \wedge k = k') \mathbb P( \, y_{ki} = y_{k,i+1} | H_1) \; + \\ \mathbb I (i \ne i' \vee k \ne k') \mathbb P( \, y_{ki} = y_{k,i+1} | H_1) \mathbb P(y_{k'i'} = y_{k',i'+1} | H_1) \end{array} \end{aligned}$$

which is

$$\begin{aligned} \mathbb P( \, (y_{ki} = y_{k,i+1}) \wedge (y_{k'i'} = y_{k',i'+1}) | H_1) = {\left\{ \begin{array}{ll} 2p : &{} \quad i=i' \wedge k=k' \\ 4p^2 : &{} \quad i \ne i' \vee k \ne k' \end{array}\right. } \end{aligned}$$
(29)

Replacing (1) into (28) results in (20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayyani, H., Haddadi, F. & Korki, M. One-Bit Spectrum Sensing in Cognitive Radio Sensor Networks. Circuits Syst Signal Process 39, 2730–2743 (2020). https://doi.org/10.1007/s00034-019-01274-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01274-z

Keywords

Navigation