Skip to main content
Log in

A Feature-Based Compressive Spectrum Sensing Technique for Cognitive Radio Operation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In cognitive radio systems, data throughput of the secondary user is an important performance metric used to evaluate the spectrum usage efficiency. As such, the effectiveness of the spectrum sensing process used by the secondary user, namely the spectrum sensing accuracy, its sampling time and processing time will have significant impacts on the data throughput performance. This paper presents a novel wideband spectrum sensing technique operating at low sub-Nyquist sampling rate that can achieve high sensing accuracy and high throughput without high computational cost. The proposed technique applies a novel likelihood ratio test on the learned feature information of the primary signal for efficient spectrum sensing, which is based directly on the compressive data collected by a sub-Nyquist sampler. Comprehensive analysis of the sensing-throughput performance for various commonly used spectrum sensing techniques is also presented, which are then used to compare against the proposed technique. Simulation results using real-world ATSC DTV data operating in IEEE 802.22 WRAN environment show that due to the higher detection accuracy and shorter spectrum sensing duration, the proposed technique is able to achieve better achievable secondary user’s transmission throughput compared to other well-known spectrum sensing techniques, while operating at 0.17 time of the Nyquist sampling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. N is the number of samples which equals to the length of vector \(\varvec{y}\).

  2. \(L_f\) is the frequency smoothing length; N is the number of samples that equals to the length of \(\varvec{y}\).

  3. M is the smoothing factor of sample covariance. L is the length of each sample vector.

  4. N equals to the total number of samples from all narrowband collections.

  5. k is the sparsity. m is the number of compressive samples. N is the number of samples under Nyquist rate sampling.

References

  1. E. Axell, E.G. Larsson, A unified framework for glrt-based spectrum sensing of signals with covariance matrices with known eigenvalue multiplicities, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2956–2959 (2011)

  2. E. Axell, G. Leus, E.G. Larsson, H.V. Poor, Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process. Mag. 29(3), 101–116 (2012)

    Article  Google Scholar 

  3. W. Bretl, W.R. Meintel, G. Sgrignoli, X. Wang, S.M. Weiss, K. Salehian, ATSC RF, modulation, and transmission. Proc. IEEE 94(1), 44–59 (2006)

    Article  Google Scholar 

  4. E.J. Candes, The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 346(9), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. E.J. Candès et al., Compressive sampling. Proc. Int. Congr. Math. 3, 1433–1452 (2006)

    MathSciNet  MATH  Google Scholar 

  6. E.J. Candes, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Da, G. Xiaoying, C. Hsiao-Hwa, Q. Liang, X. Miao, Significant cycle frequency based feature detection for cognitive radio systems, in 2009 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, pp. 1–4 (2009)

  8. A.V. Dandawate, G.B. Giannakis, Statistical tests for presence of cyclostationarity. IEEE Trans. Signal Process. 42(9), 2355–2369 (1994)

    Article  Google Scholar 

  9. M.A. Davenport, P.T. Boufounos, M.B. Wakin, R.G. Baraniuk, Signal processing with compressive measurements. IEEE J. Sel. Top. Signal Process. 4(2), 445–460 (2010)

    Article  Google Scholar 

  10. G. Ding, Q. Wu, Y.D. Yao, J. Wang, Y. Chen, Kernel-based learning for statistical signal processing in cognitive radio networks: theoretical foundations, example applications, and future directions. IEEE Signal Process. Mag. 30(4), 126–136 (2013)

    Article  Google Scholar 

  11. S. Enserink, D. Cochran, A cyclostationary feature detector, in Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 806–810 (1994)

  12. B. Farhang-Boroujeny, Filter bank spectrum sensing for cognitive radios. IEEE Trans. Signal Process. 56(5), 1801–1811 (2008)

    Article  MathSciNet  Google Scholar 

  13. V. Havary-Nassab, S. Hassan, S. Valaee, Compressive detection for wide-band spectrum sensing, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3094–3097 (2010)

  14. X. Hong, C. Wang, H. Chen, Y. Zhang, Secondary spectrum access networks. IEEE Veh. Technol. Mag. 4(2), 36–43 (2009)

    Article  Google Scholar 

  15. S. Hou, R. Qiu, J.P. Browning, M. Wicks, Spectrum sensing in cognitive radio with subspace matching, in IEEE Waveform Diversity and Design Conference 2012, Citeseer (2012)

  16. A. Kaushik, S.K. Sharma, S. Chatzinotas, B. Ottersten, F. Jondral, Performance analysis of hybrid cognitive radio systems with imperfect channel knowledge, in 2016 IEEE International Conference on Communications (ICC), pp. 1–7

  17. E.G. Larsson, M. Skoglund, Cognitive radio in a frequency-planned environment: some basic limits. IEEE Trans. Wirel. Commun. 7(12), 4800–4806 (2008)

    Article  Google Scholar 

  18. Y.C. Liang, Y. Zeng, E.C.Y. Peh, A.T. Hoang, Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wirel. Commun. 7(4), 1326–1337 (2008)

    Article  Google Scholar 

  19. D. Needell, J.A. Tropp, Cosamp: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. H.V. Poor, An Introduction to Signal Detection and Estimation (Springer, New York, 1994)

    Book  MATH  Google Scholar 

  21. R. Shaker, H. Khakzad, A. Taherpour, T. Khattab, M.O. Hasna, Hybrid underlay/overlay cognitive radio system with hierarchical modulation in the presence of channel estimation error. in 2014 IEEE Global Communications Conference, pp 967–972 (2014)

  22. S.K. Sharma, S. Chatzinotas, B. Ottersten, A hybrid cognitive transceiver architecture: Sensing-throughput tradeoff, in 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp 143–149 (2014)

  23. S. Shellhammer, V. Tawil, G. Chouinard, M. Muterspaugh, M. Ghosh, Spectrum sensing simulation model, in IEEE 80222-06/0028r10 (2006)

  24. S.S.J. Shellhammer, Spectrum Sensing in IEEE 802.22. 2008 IAPR Workshop on Cognitive Information Processing (CIP ’08), pp 1–6 (2008)

  25. H. Shokri-Ghadikolaei, I. Glaropoulos, V. Fodor, C. Fischione, A. Ephremides, Green sensing and access: energy-throughput trade-offs in cognitive networking. IEEE Commun. Mag. 53(11), 199–207 (2015)

    Article  Google Scholar 

  26. C.R. Stevenson, C. Cordeiro, E. Sofer, G. Chouinard, Functional Requirements for the 802.22 Wran Standard. IEEE Std, pp. 802–822 (2005)

  27. S. Stotas, A. Nallanathan, On the throughput and spectrum sensing enhancement of opportunistic spectrum access cognitive radio networks. IEEE Trans. Wirel. Commun. 11(1), 97–107 (2012)

    Article  Google Scholar 

  28. R. Tandra, A. Sahai, Snr walls for signal detection. IEEE J. Sel. Top. Signal Process. 2(1), 4–17 (2008)

    Article  Google Scholar 

  29. V. Tawil, 51 captured DTV signal (2006)

  30. J.A. Tropp, J.N. Laska, M.F. Duarte, J.K. Romberg, R.G. Baraniuk, Beyond nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans. Inf. Theory 56(1), 520–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Urkowitz, Energy detection of unknown deterministic signals. Proc. IEEE 55(4), 523–531 (1967)

    Article  Google Scholar 

  32. C.X. Wang, X. Hong, H.H. Chen, J. Thompson, On capacity of cognitive radio networks with average interference power constraints. IEEE Trans. Wirel. Commun. 8(4), 1620–1625 (2009)

    Article  Google Scholar 

  33. Y. Zeng, Y.C. Liang, Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)

    Article  Google Scholar 

  34. P. Zhang, R. Qiu, N. Guo, Demonstration of spectrum sensing with blindly learned features. IEEE Commun. Lett. 15(5), 548–550 (2011)

    Article  Google Scholar 

  35. J. Zou, H. Xiong, D. Wang, C.W. Chen, Optimal power allocation for hybrid overlay/underlay spectrum sharing in multiband cognitive radio networks. IEEE Trans. Veh. Technol. 62(4), 1827–1837 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Appendices

Appendix A

This “Appendix” shows the derivation of the \(\sigma _0\) and \(\sigma _1\) used in (33). First, we derive the differential expression of the (31) and (32), leading to

$$\begin{aligned} \begin{aligned}&\frac{{\partial \ln p\left( {{\varvec{\varGamma }_{y}}|{\sigma ^2},\mathcal{H}_1} \right) }}{{\partial {\sigma ^2}}} = - \frac{M}{2}\left[ \frac{\lambda _{a,1}}{ \lambda _{s,1} + \lambda _{a,1} \sigma ^2 } + \frac{ (L - 1)}{{\sigma ^2 }} \right] \\&\quad - \frac{M}{2} \left[ -\frac{\varvec{\phi }_{a,1}^T \varvec{C}_y \varvec{\phi }_{a,1} \lambda _{a,1} }{\left( \varvec{\phi }_{a,1} \varvec{C}_s^1 \varvec{\phi }_{a,1} + \lambda _{a,1}\sigma ^2 \right) ^2 } - \frac{{\frac{1}{{M }}\sum \limits _{m=1}^{M } {\varvec{y}_m^T \varvec{y}_m } - {\varvec{\phi }_{a,1}^T{\varvec{C}_y}{\varvec{\phi }_{a,1}}} } }{ \epsilon \left( {\sigma ^2 } \right) ^2 } \right] \end{aligned} \end{aligned}$$
(36)

and

$$\begin{aligned} \begin{aligned}&\frac{{\partial \ln p\left( {{\varvec{\varGamma }_{y}}|{\sigma ^2},\mathcal{H}_0} \right) }}{{\partial {\sigma ^2}}} = - \frac{M}{2}\left[ \frac{1}{{\sigma ^2 }} + \frac{ (L - 1)}{{\sigma ^2 }} \right] \\&\quad - \frac{M}{2}\left[ -\frac{{\varvec{\phi }_{a,1}^T{\varvec{C}_y}{\varvec{\phi }_{a,1}}}}{\lambda _{a,1} \left( { \sigma ^2 } \right) ^2 } - \frac{{\frac{1}{{M }}\sum \limits _{m=1}^{M } {\varvec{y}_m^T \varvec{y}_m } - {\varvec{\phi }_{a,1}^T{\varvec{C}_y}{\varvec{\phi }_{a,1}}} } }{ \epsilon \left( {\sigma ^2 } \right) ^2 } \right] \end{aligned} \end{aligned}$$
(37)

Setting \(\frac{{\partial \ln p\left( {\varvec{\varGamma }_{y}|{\sigma ^2},\mathcal{H}_0} \right) }}{{\partial {\sigma ^2}}} = 0\) in (37) and we have the MLE of \(\sigma ^2\) under \(\mathcal{H}_0\):

$$\begin{aligned} {\hat{\sigma } }_0^2 = \frac{\varvec{\phi }_{a,1}^T \varvec{C}_y \varvec{\phi }_{a,1}}{\lambda _{a,1} L} + \frac{\sum \limits _{m=1}^{M } \varvec{y}_m^T \varvec{y}_m - \varvec{\phi }_{a,1}^T \varvec{C}_y \varvec{\phi }_{a,1} }{\epsilon L} \end{aligned}$$
(38)

Similarly, setting \(\frac{{\partial \ln p\left( {{\varvec{\varGamma }_{y}}|{\sigma ^2},\mathcal{H}_1} \right) }}{{\partial {\sigma ^2}}} = 0\) in (36), and with the \(\frac{{\partial \ln p\left( {{\varvec{\varGamma }_{y}}|{\lambda _{a,1}},{\sigma ^2},\mathcal{H}_1} \right) }}{{\partial \lambda _{a,1}}} = - \frac{{{M}}}{2}\left( \frac{\sigma ^2}{{{\lambda _{s,1}} + { \lambda _{a,1}\sigma ^2}}} - \frac{\sigma ^2 \varvec{\phi }_{a,1}^T \varvec{C}_y \varvec{\phi }_{a,1}}{{\left( \varvec{\phi }_{a,1} \varvec{C}_s^1 \varvec{\phi }_{a,1} + \lambda _{a,1} \sigma ^2 \right) }^2} \right) =0\), we have MLE of \(\sigma ^2\) under \(\mathcal{H}_1\):

$$\begin{aligned} {\hat{\sigma } }_1^2 = \frac{{\frac{1}{{M }}\sum \limits _{m=1}^{M } \varvec{y}_m^T \varvec{y}_m - \varvec{\phi }_{a,1}^T \varvec{C}_y \varvec{\phi }_{a,1} } }{ \epsilon (L-1) } \end{aligned}$$
(39)

Substituting the estimated \(\hat{\sigma }_0^2\) and \(\hat{\sigma }_1^2\) back to the (32) and (31), we obtained the updated logarithm likelihood function as:

$$\begin{aligned} \begin{aligned} \ln p\left( {{\varvec{\varGamma }_{y}}|\mathcal{H}_1} \right) =&- \frac{{L{M}}}{2}\ln 2\pi - \frac{{{M}}}{2}\left[ {\ln \left( \lambda _{s,1} + \lambda _{a,1} \sigma _1^2 \right) + \left( {L - 1} \right) \ln \left( {{ \epsilon \sigma _1^2}} \right) } \right] \\&- \frac{{{M}}}{2}\left[ \frac{\varvec{\phi }_{a,1}^T \varvec{C}_s^1 \varvec{\phi }_{a,1} + \lambda _{a,1} \sigma _1^2 }{\lambda _{s,1} + \lambda _{a,1}\sigma _1^2} + (L-1) \right] \end{aligned} \end{aligned}$$
(40)

and

$$\begin{aligned} \begin{aligned} \ln p\left( {{\varvec{\varGamma }_{y}}|\mathcal{H}_0} \right) = - \frac{{L{M}}}{2}\ln 2\pi - \frac{{{M}}}{2}\left[ {\ln \left( {\lambda _{a,1} \sigma _0^2} \right) + \left( {L - 1} \right) \ln \left( \epsilon \sigma _0^2 \right) } +L \right] \\ \end{aligned} \end{aligned}$$
(41)

With (40) and (41), the test function for the proposed spectrum sensing (33) becomes:

$$\begin{aligned} \begin{aligned} T(\varvec{y}) = \ln \frac{\lambda _{a,1} \sigma _0^2}{\lambda _{s,1} + \lambda _{a,1} \sigma _1^2} + (L-1) \ln \frac{\sigma _0^2}{\sigma _1^2} +\frac{\lambda _{s,1} - \varvec{\phi }_{a,1}^T \varvec{C}_s^1 \varvec{\phi }_{a,1} }{\lambda _{s,1} + \lambda _{a,1} \sigma _1^2} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless }} \eta \end{aligned} \end{aligned}$$
(42)

Appendix B

This “Appendix” shows a notation table which includes all vectors and matrices used in the derivation of the proposed SS in Sect. 5.3 (Table 3).

Table 3 Notation table of vectors and matrices used for the derivation of proposed SS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Vun, C.H. A Feature-Based Compressive Spectrum Sensing Technique for Cognitive Radio Operation. Circuits Syst Signal Process 37, 1287–1314 (2018). https://doi.org/10.1007/s00034-017-0610-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0610-x

Keywords

Navigation