Skip to main content
Log in

Binary Genetic Encoding for the Synthesis of Mixed-Mode Circuit Topologies

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A binary genetic encoding (BGE) representation for the automatic synthesis of mixed-mode circuit topologies, is introduced. First, the genetic encoding of unity-gain cells (UGCs), such as voltage (VF) and current followers (CF), and voltage (VM) and current mirrors (CM), is presented. New BGEs for the VM and CM are introduced. Second, the UGC’s chromosomes are combined to synthesize mixed-mode circuit-topologies, namely current conveyors and current-feedback operational amplifiers (CFOA). Five strategies for the combination or superimposing of UGCs are introduced. The proposed BGE has been implemented in MATLABTM, and links SPICE to evaluate the populations with different integrated circuit technologies. Some new synthesized circuit topologies are shown along with their chromosome description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.A. Awad, A.M. Soliman, On the voltage mirrors and the current mirrors. Analog Integr. Circuits Signal Process. 32, 79–81 (2002)

    Article  Google Scholar 

  2. D.R. Bhaskar, R. Senani, A.K. Singh, Linear sinusoidal VCOs: new configurations using current-feedback-opamps. Int. J. Electron. 97(3), 263–272 (2010)

    Article  Google Scholar 

  3. J.B. Grimbleby, Automatic analogue circuit synthesis using genetic algorithms. IEEE Proc. Circ. Dev. Syst. 147(6), 319–323 (2000)

    Article  Google Scholar 

  4. S.S. Gupta, R. Senani, New single resistance controlled oscillator employing a reduced number of unity-gain cells. IEICE Electron. Express 1(16), 507–512 (2004)

    Article  Google Scholar 

  5. S.S. Gupta, R. Senani, New voltage-mode/current-mode universal biquad filter using unity-gain cells. Int. J. Electron. 93(11), 760–775 (2006)

    Article  Google Scholar 

  6. S.S. Gupta, D.R. Bhaskar, R. Senani, A.K. Singh, Inverse active filters employing CFOAs. Electr. Eng. 91(1), 23–26 (2009)

    Article  Google Scholar 

  7. S.S. Gupta, R.K. Sharma, D.R. Bhaskar, R. Senani, Sinusoidal oscillators with explicit current output employing current-feedback opamps. Int. J. Circuit Theory Appl. 38(2), 131–147 (2010)

    MATH  Google Scholar 

  8. A. Lahiri, W. Jaikla, M. Siripruchyanun, Voltage-mode quadrature sinusoidal oscillator with current tunable properties. Analog Integr. Circuits Signal Process. 65(2), 321–325 (2010)

    Article  Google Scholar 

  9. A. López-Martin, J. Ramirez-Angulo, R.G. Carvajal, L. Acosta, Micropower high current-drive class AB CMOS current-feedback operational amplifier. Int. J. Circuit Theory Appl. (2010). doi:10.1002/cta.674

    Google Scholar 

  10. E. Martens, G. Gielen, Classification of analog synthesis tools based on their architecture selection mechanisms. Integr. VLSI J. 41(2), 238–252 (2008)

    Article  Google Scholar 

  11. C. Mattiussi, D. Floreano, Analog genetic encoding for the evolution of circuits and networks. IEEE Trans. Evol. Comput. 11(5), 596–607 (2007)

    Article  Google Scholar 

  12. S. Minaei, E. Yuce, All-grounded passive elements voltage-mode DVCC-based universal filters. Circuits Syst. Signal Process. 29(2), 295–309 (2010)

    Article  MATH  Google Scholar 

  13. S. Nikoloudis, C. Psychalinos, Multiple input single output universal biquad filter with current feedback operational amplifiers. Circuits Syst. Signal Process. 29(6), 1167–1180 (2010)

    Article  MATH  Google Scholar 

  14. R. Raut, M.N.S. Swamy, N. Tian, Current-mode filters using voltage amplifiers. Circuits Syst. Signal Process. 26(5), 773–792 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. R.A. Rutenbar, G. Gielen, J. Roychowdhury, Hierarchical modeling, optimization, and synthesis for system-level analog and RF designs. Proc. IEEE 95(3), 640–669 (2007)

    Article  Google Scholar 

  16. C. Sánchez-López, F.V. Fernández, E. Tlelo-Cuautle, Generalized admittance matrix models of OTRAs and COAs. Microelectron. J. 41(8), 502–505 (2010)

    Article  Google Scholar 

  17. C. Sánchez-López, R. Trejo-Guerra, J.M. Munoz-Pacheco, E. Tlelo-Cuautle, N-scroll chaotic attractors from saturated function series employing CCII+s. Nonlinear Dyn. 61(1–2), 331–341 (2010)

    Article  MATH  Google Scholar 

  18. C. Sánchez-López, F.V. Fernández, E. Tlelo-Cuautle, S.X.-D. Tan, Pathological element-based active device models and their application to symbolic analysis. IEEE Trans. Circuits Syst. I, Regul. Pap. 58(6), 1382–1395 (2011). doi:10.1109/TCSI.2010.2097696

    Article  MathSciNet  Google Scholar 

  19. C. Sánchez-López, E. Tlelo-Cuautle, E. Martinez-Romero, Symbolic analysis of OTRAs-based circuits. J. Appl. Res. Technol. 9(1), 69–80 (2011)

    Google Scholar 

  20. R. Senani, S.S. Gupta, Novel sinusoidal oscillators using only unity-gain voltage followers and current followers. IEICE Electron. Express 1(13), 404–409 (2004)

    Article  Google Scholar 

  21. E.A. Sohby, A.M. Soliman, Novel CMOS realization of balanced-output third generation inverting current conveyor with applications. Circuits Syst. Signal Process. 28(6), 1037–1051 (2009)

    Article  Google Scholar 

  22. A.M. Soliman, Applications of voltage and current unity gain cells in nodal admittance matrix expansion. IEEE Circuits Syst. Mag. 9(4), 29–42 (2009)

    Article  MathSciNet  Google Scholar 

  23. A.M. Soliman, Transformation of oscillators using Op Amps, unity gain cells and CFOA. Analog Integr. Circuits Signal Process. 65(1), 105–114 (2010)

    Article  Google Scholar 

  24. A.M. Soliman, R.A. Saad, Generation of second generation current conveyor (CCII) family from inverting second generation current conveyor (ICCII) family. Int. J. Electron. 97(4), 405–414 (2010)

    Article  Google Scholar 

  25. E. Tlelo-Cuautle, D. Torres-Muñoz, L. Torres-Papaqui, On the computational synthesis of CMOS voltage followers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E88-A(12), 3479–3484 (2005)

    Article  Google Scholar 

  26. E. Tlelo-Cuautle, M.A. Duarte-Villasenor, I. Guerra-Gómez, Automatic synthesis of VFs and VMs by applying genetic algorithms. Circuits Syst. Signal Process. 27(3), 391–403 (2008)

    Article  Google Scholar 

  27. E. Tlelo-Cuautle, D. Moro-Frias, C. Sánchez-López, M.A. Duarte-Villasenor, Synthesis of CCII-s by superimposing VFs and CFs through genetic operations. IEICE Electron. Express 5(11), 411–417 (2008)

    Article  Google Scholar 

  28. E. Tlelo-Cuautle, I. Guerra-Gómez, M.A. Duarte-Villasenor, Luis G. de la Fraga, G. Flores-Becerra, G. Reyes-Salgado, C.A. Reyes-Garcia, G. Rodriguez-Gómez, Applications of evolutionary algorithms in the design automation of analog integrated circuits. J. Appl. Sci. 10(17), 1859–1872 (2010)

    Article  Google Scholar 

  29. E. Tlelo-Cuautle, C. Sánchez-López, E. Martinez-Romero, Sheldon X.-D. Tan, Symbolic analysis of analog circuits containing voltage mirrors and current mirrors. Analog Integr. Circuits Signal Process. 65(1), 89–95 (2010)

    Article  Google Scholar 

  30. E. Tlelo-Cuautle, C. Sánchez-López, D. Moro-Frias, Symbolic analysis of (MO)(I)CCI(II)(III)-based analog circuits. Int. J. Circuit Theory Appl. 38(6), 649–659 (2010)

    Google Scholar 

  31. L. Torres-Papaqui, D. Torres-Muñoz, E. Tlelo-Cuautle, Synthesis of VFs and CFs by manipulation of generic cells. Analog Integr. Circuits Signal Process. 46(2), 99–102 (2006)

    Article  Google Scholar 

  32. R. Trejo-Guerra, E. Tlelo-Cuautle, C. Sánchez-López, J.M. Munoz-Pacheco, C. Cruz-Hernández, Realization of multiscroll chaotic attractors by using current-feedback operational amplifiers. Rev. Mex. Fis. 56(4), 268–274 (2010)

    Google Scholar 

  33. S.H. Tu, C.M. Chang, J.N. Ross, M.N.S. Swamy, Analytical synthesis of current-mode high-order single-ended-input OTA and equal-capacitor elliptic filter structures with the minimum number of components. IEEE Trans. Circuits Syst. I 54(10), 2195–2210 (2007)

    Article  Google Scholar 

  34. L.H. Zhang, X.G. Zhang, E. El-Masry, A highly linear bulk-driven CMOS OTA for continuous-time filters. Analog Integr. Circuits Signal Process. 54(3), 229–236 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Tlelo-Cuautle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte-Villaseñor, M.A., Tlelo-Cuautle, E. & de la Fraga, L.G. Binary Genetic Encoding for the Synthesis of Mixed-Mode Circuit Topologies. Circuits Syst Signal Process 31, 849–863 (2012). https://doi.org/10.1007/s00034-011-9353-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9353-2

Keywords

Navigation