Skip to main content
Log in

Review of the grey wolf optimization algorithm: variants and applications

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

One of the most widely referenced Swarm Intelligence (SI) algorithms is the Grey Wolf Optimizer (GWO), which is based on the pack hunting and natural leadership organization of grey wolves. The GWO algorithm offers several significant benefits, including simple implementation, rapid convergence, and superior convergence outcomes, leading to its effective application in diverse fields for solving optimization issues. Consequently, the GWO has rapidly garnered substantial research interest and a broad audience across numerous areas. To better understand the literature on this algorithm, this review paper aims to consolidate and summarize research publications that utilized the GWO. The paper begins with a concise introduction to the GWO, providing insight into its natural establishment and conceptual framework for optimization. It then lays out the theoretical foundation and key procedures involved in the GWO, following which it comprehensively examines the most recent iterations of the algorithm and categorizes them into parallel, modified, and hybridized variations. Subsequently, the primary applications of the GWO are thoroughly explored, spanning various fields such as computer science, engineering, energy, physics and astronomy, materials science, environmental science, and chemical engineering, among others. This review paper concludes by summarizing the key arguments in favour of GWO and outlining potential lines of inquiry in the future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Amr HA, Khajehzadeh M, Taha M, Beheshti Z, Mariyam S, and Shamsuddin H, “A review of population-based meta-heuristic algorithm,” 2013. [Online]. Available: www.i-csrs.org

  2. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  3. Institute of Electrical and Electronics Engineers (2008) In: IEEE World Congress on Computational Intelligence (2008: Hong Kong, Evolutionary Computation, 2008, CEC 2008, (IEEE World Congress on Computational Intelligence), IEEE Congress on: date, 1–6 June, 2008

  4. Lin L, Gen M (2009) Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Comput. https://doi.org/10.1007/s00500-008-0303-2

    Article  Google Scholar 

  5. Kirkpatrick S, Gelatt CD, and Vecchi MP (1983) Optimization by Simulated Annealing. [Online]. Available: https://www.science.org

  6. Biswas S, Acharyya S (2018) A Bi-objective RNN model to reconstruct gene regulatory network: a modified multi-objective simulated annealing approach. IEEE/ACM Trans Comput Biol Bioinform 15(6):2053–2059. https://doi.org/10.1109/TCBB.2017.2771360

    Article  Google Scholar 

  7. Holland JH (1992) Genetic algorithms. Sci Am 267:66–72. https://doi.org/10.2307/24939139

    Article  Google Scholar 

  8. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99. https://doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  9. Eberhart R and Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the International Symposium on Micro Machine and Human Science, IEEE pp 39–43. doi: https://doi.org/10.1109/mhs.1995.494215

  10. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579. https://doi.org/10.1016/j.amc.2006.11.033

    Article  MathSciNet  Google Scholar 

  11. Biswas S, Dutta S, Acharyya S (2019) Identification of disease critical genes using collective meta-heuristic approaches: an application to preeclampsia. Interdiscip Sci 11(3):444–459. https://doi.org/10.1007/s12539-017-0276-x

    Article  Google Scholar 

  12. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  13. Koza JR, Rice JP (1992) Automatic programming of robots using genetic programming. AAAI 92:194–207

    Google Scholar 

  14. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Kluwer Academic Publishers, Alphen aan den Rijn

    Google Scholar 

  15. Guo SM, Yang CC, Hsu PH, Tsai JSH (2015) Improving differential evolution with a successful-parent-selecting framework. IEEE Trans Evol Comput 19(5):717–730. https://doi.org/10.1109/TEVC.2014.2375933

    Article  Google Scholar 

  16. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  17. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289. https://doi.org/10.1007/s00707-009-0270-4

    Article  Google Scholar 

  18. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci (N Y) 222:175–184. https://doi.org/10.1016/j.ins.2012.08.023

    Article  MathSciNet  Google Scholar 

  19. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112–113:283–294. https://doi.org/10.1016/j.compstruc.2012.09.003

    Article  Google Scholar 

  20. Kennedy J and Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, IEEE, pp 1942–1948. doi: https://doi.org/10.1109/ICNN.1995.488968

  21. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  22. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  Google Scholar 

  23. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  24. Hammouri AI, Mafarja M, Al-Betar MA, Awadallah MA, Abu-Doush I (2020) An improved Dragonfly Algorithm for feature selection. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2020.106131

    Article  Google Scholar 

  25. Kahya MA, Altamir SA, Algamal ZY (2019) Improving firefly algorithm-based logistic regression for feature selection. J Interdiscip Math 22(8):1577–1581. https://doi.org/10.1080/09720502.2019.1706861

    Article  Google Scholar 

  26. Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf optimizer: a review of recent variants and applications. Neural Comput Appl 30(2):413–435. https://doi.org/10.1007/s00521-017-3272-5

    Article  Google Scholar 

  27. Fu Y, Xiao H, Lee LH, Huang M (2021) Stochastic optimization using grey wolf optimization with optimal computing budget allocation. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2021.107154

    Article  Google Scholar 

  28. Liu M, Luo K, Zhang J, Chen S (2021) A stock selection algorithm hybridizing grey wolf optimizer and support vector regression. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.115078

    Article  Google Scholar 

  29. Khalilpourazari S, Hashemi Doulabi H, Özyüksel Çiftçioğlu A, Weber GW (2021) Gradient-based grey wolf optimizer with Gaussian walk: application in modelling and prediction of the COVID-19 pandemic. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.114920

    Article  Google Scholar 

  30. Muro C, Escobedo R, Spector L, Coppinger RP (2011) Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Proc 88(3):192–197. https://doi.org/10.1016/j.beproc.2011.09.006

    Article  Google Scholar 

  31. van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971. https://doi.org/10.1016/j.ins.2005.02.003

    Article  MathSciNet  Google Scholar 

  32. Gao ZM, Zhao J (2019) An improved grey Wolf optimization algorithm with variable weights. Comput Intell Neurosci. https://doi.org/10.1155/2019/2981282

    Article  Google Scholar 

  33. Hu P, Chen S, Huang H, Zhang G, Liu L (2019) Improved alpha-guided grey wolf optimizer. IEEE Access 7:5421–5437. https://doi.org/10.1109/ACCESS.2018.2889816

    Article  Google Scholar 

  34. Luo K (2019) Enhanced grey wolf optimizer with a model for dynamically estimating the location of the prey. Appl Soft Comput J 77:225–235. https://doi.org/10.1016/j.asoc.2019.01.025

    Article  Google Scholar 

  35. Gupta S, Deep K (2019) A novel random walk grey wolf optimizer. Swarm Evol Comput 44:101–112. https://doi.org/10.1016/j.swevo.2018.01.001

    Article  Google Scholar 

  36. Long W, Jiao J, Liang X, Tang M (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80. https://doi.org/10.1016/j.engappai.2017.10.024

    Article  Google Scholar 

  37. Adhikary J, Acharyya S (2022) randomized balanced grey wolf optimizer (RBGWO) for solving real life optimization problems. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2022.108429

    Article  Google Scholar 

  38. Kohli M, Arora S (2018) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Des Eng 5(4):458–472. https://doi.org/10.1016/j.jcde.2017.02.005

    Article  Google Scholar 

  39. Emary E, Zawbaa HM, Grosan C (2018) Experienced gray wolf optimization through reinforcement learning and neural networks. IEEE Trans Neural Netw Learn Syst 29(3):681–694. https://doi.org/10.1109/TNNLS.2016.2634548

    Article  MathSciNet  Google Scholar 

  40. Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113917

    Article  Google Scholar 

  41. Tripathi AK, Sharma K, Bala M (2018) A novel clustering method using enhanced grey wolf optimizer and mapreduce. Big Data Res 14:93–100. https://doi.org/10.1016/j.bdr.2018.05.002

    Article  Google Scholar 

  42. Guo MW, Wang JS, Zhu LF, Guo SS, and Xie W (2020) An improved grey wolf optimizer based on tracking and seeking modes to solve function optimization problems _ enhanced reader. IEEE Access

  43. Hu J et al (2021) Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2020.106684

    Article  Google Scholar 

  44. Yuan Y, Mu X, Shao X, Ren J, Zhao Y, Wang Z (2022) Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based grey wolf optimizer algorithm. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2022.108947

    Article  Google Scholar 

  45. Rajakumar R, Sekaran K, Hsu CH, Kadry S (2021) Accelerated grey wolf optimization for global optimization problems. Technol Forecast Soc Change. https://doi.org/10.1016/j.techfore.2021.120824

    Article  Google Scholar 

  46. Banerjee N, Mukhopadhyay S (2022) AP-TLB-IGWO: adult-pup teaching–learning based interactive grey wolf optimizer for numerical optimization. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2022.109000

    Article  Google Scholar 

  47. Miao Z, Yuan X, Zhou F, Qiu X, Song Y, Chen K (2020) Grey wolf optimizer with an enhanced hierarchy and its application to the wireless sensor network coverage optimization problem. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2020.106602

    Article  Google Scholar 

  48. Jiang J, Zhao Z, Liu Y, Li W, Wang H (2022) DSGWO: an improved grey wolf optimizer with diversity enhanced strategy based on group-stage competition and balance mechanisms. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2022.109100

    Article  Google Scholar 

  49. Yue Z, Zhang S, Xiao W (2020) A novel hybrid algorithm based on grey wolf optimizer and fireworks algorithm. Sensors. https://doi.org/10.3390/s20082147

    Article  Google Scholar 

  50. Wang JS, Li SX (2019) An improved grey wolf optimizer based on differential evolution and elimination mechanism. Sci Rep. https://doi.org/10.1038/s41598-019-43546-3

    Article  Google Scholar 

  51. Teng ZJ, Lv JL, Guo LW (2019) An improved hybrid grey wolf optimization algorithm. Soft Comput 23(15):6617–6631. https://doi.org/10.1007/s00500-018-3310-y

    Article  Google Scholar 

  52. Long W, Cai S, Jiao J, Xu M, Wu T (2020) A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.112243

    Article  Google Scholar 

  53. Gaidhane PJ, Nigam MJ (2018) A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems. J Comput Sci 27:284–302. https://doi.org/10.1016/j.jocs.2018.06.008

    Article  Google Scholar 

  54. Ma C, Huang H, Fan Q, Wei J, Du Y, Gao W (2022) Grey wolf optimizer based on Aquila exploration method. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2022.117629

    Article  Google Scholar 

  55. Sun X, Xiong Y, Yao M, Tang X, Tian X (2022) A unified control method combined with improved TSF and LADRC for SRMs Using modified grey wolf optimization algorithm. ISA Trans. https://doi.org/10.1016/j.isatra.2022.05.013

    Article  Google Scholar 

  56. Alomoush AA, Alsewari AA, Alamri HS, Aloufi K, Zamli KZ (2019) Hybrid harmony search algorithm with grey wolf optimizer and modified opposition-based learning. IEEE Access 7:68764–68785. https://doi.org/10.1109/ACCESS.2019.2917803

    Article  Google Scholar 

  57. Zhu Z, Zhou X, Cao D, Li M (2022) A shuffled cellular evolutionary grey wolf optimizer for flexible job shop scheduling problem with tree-structure job precedence constraints. Appl Soft Comput 125:109235. https://doi.org/10.1016/j.asoc.2022.109235

    Article  Google Scholar 

  58. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  59. Hasanzadeh A, Chitsaz A, Ghasemi A, Mojaver P, Khodaei R, Alirahmi SM (2022) Soft computing investigation of stand-alone gas turbine and hybrid gas turbine–solid oxide fuel cell systems via artificial intelligence and multi-objective grey wolf optimizer. Energy Rep 8:7537–7556. https://doi.org/10.1016/j.egyr.2022.05.281

    Article  Google Scholar 

  60. Li Y, Ye C, Wang H, Wang F, Xu X (2022) A discrete multi-objective grey wolf optimizer for the home health care routing and scheduling problem with priorities and uncertainty. Comput Ind Eng. https://doi.org/10.1016/j.cie.2022.108256

    Article  Google Scholar 

  61. Moldovan D, Slowik A (2021) Energy consumption prediction of appliances using machine learning and multi-objective binary grey wolf optimization for feature selection. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2021.107745

    Article  Google Scholar 

  62. Li J et al (2017) Feature selection: a data perspective. ACM Comput Surv. https://doi.org/10.1145/3136625

    Article  Google Scholar 

  63. Wang J, Lin D, Zhang Y, Huang S (2022) An adaptively balanced grey wolf optimization algorithm for feature selection on high-dimensional classification. Eng Appl Artif Intell 114:105088. https://doi.org/10.1016/j.engappai.2022.105088

    Article  Google Scholar 

  64. Abdel-Basset M, El-Shahat D, El-henawy I, de Albuquerque VHC, Mirjalili S (2020) A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2019.112824

    Article  Google Scholar 

  65. Al-Tashi Q, Abdul Kadir SJ, Rais HM, Mirjalili S, Alhussian H (2019) Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7:39496–39508. https://doi.org/10.1109/ACCESS.2019.2906757

    Article  Google Scholar 

  66. Hu P, Pan JS, Chu SC (2020) Improved binary grey wolf optimizer and its application for feature selection. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2020.105746

    Article  Google Scholar 

  67. Chantar H, Mafarja M, Alsawalqah H, Heidari AA, Aljarah I, Faris H (2020) Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification. Neural Comput Appl 32(16):12201–12220. https://doi.org/10.1007/s00521-019-04368-6

    Article  Google Scholar 

  68. Tu Q, Chen X, Liu X (2019) Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Appl Soft Comput J 76:16–30. https://doi.org/10.1016/j.asoc.2018.11.047

    Article  Google Scholar 

  69. Zamfirache IA, Precup RE, Roman RC, Petriu EM (2022) Policy Iteration Reinforcement Learning-based control using a Grey Wolf Optimizer algorithm. Inf Sci 585:162–175. https://doi.org/10.1016/j.ins.2021.11.051

    Article  Google Scholar 

  70. Bardhan A et al (2022) A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.127454

    Article  Google Scholar 

  71. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Article  Google Scholar 

  72. Syah R, Towfighi Naeem MH, Daneshfar R, Dehdar H, Soulgani BS (2022) On the prediction of methane adsorption in shale using grey wolf optimizer support vector machine approach. Petroleum 8(2):264–269. https://doi.org/10.1016/j.petlm.2021.12.002

    Article  Google Scholar 

  73. Li S, Xu K, Xue G, Liu J, Xu Z (2022) Prediction of coal spontaneous combustion temperature based on improved grey wolf optimizer algorithm and support vector regression. Fuel. https://doi.org/10.1016/j.fuel.2022.124670

    Article  Google Scholar 

  74. Kogan J and Nicholas C (2006) A survey of clustering data mining techniques. In: Grouping Multidimensional Data, Marc Teboulle, Ed. pp 25–71

  75. Zhang X, Kang Q, Cheng J, Wang X (2018) A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer. Appl Soft Comput J 67:197–214. https://doi.org/10.1016/j.asoc.2018.02.049

    Article  Google Scholar 

  76. Ray S, Kundu A, and Na T (2020) Optimization algorithm based PID controller design for a magnetic levitation system. In: Proceedings of 2020 IEEE Calcutta Conference

  77. Jain N, Parmar G, Gupta R, Khanam I (2018) Performance evaluation of GWO/PID approach in control of ball hoop system with different objective functions and perturbation. Cogent Eng. https://doi.org/10.1080/23311916.2018.1465328

    Article  Google Scholar 

  78. Padhan DG, Nawaz SS, and Ravikanth P (2020) A fractional order control strategy for LFC via big bang big crunch & grey wolf optimization algorithms. In E3S Web of Conferences, EDP Sciences, Aug. 2020. doi: https://doi.org/10.1051/e3sconf/202018401016

  79. Agarwal J, Parmar G, Gupta R, Sikander A (2018) Analysis of grey wolf optimizer based fractional order PID controller in speed control of DC motor. Microsyst Technol 24(12):4997–5006. https://doi.org/10.1007/s00542-018-3920-4

    Article  Google Scholar 

  80. Abderrahim Z, Eddine HK, Sabir M (2021) A new improved variable step size MPPT method for photovoltaic systems using grey wolf and whale optimization technique based PID controller. J Eur des Syst Autom 54(1):175–185. https://doi.org/10.18280/jesa.540120

    Article  Google Scholar 

  81. Tripathi S, Shrivastava A, Jana KC (2020) Self-tuning fuzzy controller for sun-tracker system using gray wolf optimization (GWO) technique. ISA Trans 101:50–59. https://doi.org/10.1016/j.isatra.2020.01.012

    Article  Google Scholar 

  82. Srilekha J, Saikalyan CN, Stanley G, Suneetha K, Thakreem MM (2020) Load frequency control of two area hydro-thermal system considering GRCs and GDB non linearity’s with intelligent controller. Int J Recent Technol Eng 8(5):4697–4705. https://doi.org/10.35940/ijrte.e6959.018520

    Article  Google Scholar 

  83. Debnath MK, Jena T, Sanyal SK (2019) Frequency control analysis with PID-fuzzy-PID hybrid controller tuned by modified GWO technique. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12074

    Article  Google Scholar 

  84. Padhy S, Panda S (2021) Application of a simplified grey wolf optimization technique for adaptive fuzzy PID controller design for frequency regulation of a distributed power generation system. Prot Control Modern Power Syst. https://doi.org/10.1186/s41601-021-00180-4

    Article  Google Scholar 

  85. Khadanga RK, Kumar A, Panda S (2022) A modified grey wolf optimization with cuckoo search algorithm for load frequency controller design of hybrid power system. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2022.109011

    Article  Google Scholar 

  86. Arun B, Manikandan BV, Premkumar K (2021) Multiarea power system performance measurement using optimized PID controller. Microprocess Microsyst. https://doi.org/10.1016/j.micpro.2021.104238

    Article  Google Scholar 

  87. Şen MA, Kalyoncu M (2018) Optimal tuning of PID controller using grey wolf optimizer algorithm for quadruped Robot. Balkan J Electr Comput Eng. https://doi.org/10.17694/bajece.401992

    Article  Google Scholar 

  88. Qu C, Gai W, Zhang J, Zhong M (2020) A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2020.105530

    Article  Google Scholar 

  89. Qu C, Gai W, Zhong M, Zhang J (2020) A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2020.106099

    Article  Google Scholar 

  90. Branke J, Nguyen S, Pickardt CW, Zhang M (2016) Automated design of production scheduling heuristics: a review. IEEE Trans Evolut Comput 20(1):110–124. https://doi.org/10.1109/TEVC.2015.2429314

  91. Singh MR, Singh M, Mahapatra SS, Jagadev N (2016) Particle swarm optimization algorithm embedded with maximum deviation theory for solving multi-objective flexible job shop scheduling problem. Int J Adv Manuf Technol 85(9–12):2353–2366. https://doi.org/10.1007/s00170-015-8075-1

    Article  Google Scholar 

  92. Xu J, Nagi R (2013) Solving assembly scheduling problems with tree-structure precedence constraints: a Lagrangian relaxation approach. IEEE Trans Autom Sci Eng 10(3):757–771. https://doi.org/10.1109/TASE.2013.2259816

    Article  Google Scholar 

  93. Gao K, Cao Z, Zhang L, Chen Z, Han Y, Pan Q (2019) A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA J Autom Sin 6(4):904–916. https://doi.org/10.1109/JAS.2019.1911540

    Article  Google Scholar 

  94. Amjad MK et al (2018) Recent research trends in genetic algorithm based flexible job shop scheduling problems. Math Probl Eng. https://doi.org/10.1155/2018/9270802

    Article  Google Scholar 

  95. Wang C, Zhao L, Li X, Li Y (2022) An improved grey wolf optimizer for welding shop inverse scheduling. Comput Ind Eng. https://doi.org/10.1016/j.cie.2021.107809

    Article  Google Scholar 

  96. Singha Sopto D, Akhand MAH, Islam Ayon S, and Siddique N (2018) Modified grey wolf optimization to solve traveling salesman problem; modified grey wolf optimization to solve traveling salesman problem. In: 2018 International Conference on Innovation in Engineering and Technology (ICIET), pp 1–4

  97. Panwar K, Deep K (2021) Transformation operators based grey wolf optimizer for travelling salesman problem. J Comput Sci. https://doi.org/10.1016/j.jocs.2021.101454

    Article  Google Scholar 

  98. Huovila et al., P (2009) Buildings and climate change: Summary for decision-makers. [Online]. Available: http://www.tge.ca

  99. Ferrara M, Fabrizio E, Virgone J, Filippi M (2014) A simulation-based optimization method for cost-optimal analysis of nearly Zero Energy Buildings. Energy Build 84:442–457. https://doi.org/10.1016/j.enbuild.2014.08.031

    Article  Google Scholar 

  100. Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, and Riahi K (2007) Climate change 2007: synthesis report. IPCC, p 103

  101. Delgarm N, Sajadi B, Kowsary F, Delgarm S (2016) Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO). Appl Energy 170:293–303. https://doi.org/10.1016/j.apenergy.2016.02.141

    Article  Google Scholar 

  102. Ghalambaz M, Jalilzadeh Yengejeh R, Davami AH (2021) Building energy optimization using Grey Wolf Optimizer (GWO). Case Stud Thermal Eng. https://doi.org/10.1016/j.csite.2021.101250

    Article  Google Scholar 

  103. Li L, Fu Y, Fung JCH, Qu H, Lau AKH (2021) Development of a back-propagation neural network and adaptive grey wolf optimizer algorithm for thermal comfort and energy consumption prediction and optimization. Energy Build. https://doi.org/10.1016/j.enbuild.2021.111439

    Article  Google Scholar 

  104. Mahmoodzadeh A, Nejati HR, Mohammadi M, Hashim Ibrahim H, Rashidi S, Ahmed Rashid T (2022) Forecasting tunnel boring machine penetration rate using LSTM deep neural network optimized by grey wolf optimization algorithm. Expert Syst Appl 209:118303. https://doi.org/10.1016/j.eswa.2022.118303

    Article  Google Scholar 

  105. Ji X, Tian Z, Song H, Liu F (2022) Structural performance degradation identification of offshore wind turbines based on variational mode decomposition with a Grey Wolf Optimizer algorithm. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2022.111449

    Article  Google Scholar 

  106. Ebi I, Othman Z, Sulaiman SI (2022) Optimal design of grid-connected photovoltaic system using grey wolf optimization. Energy Rep 8:1125–1132. https://doi.org/10.1016/j.egyr.2022.06.083

    Article  Google Scholar 

  107. Xavier FJ, Pradeep A, Premkumar M, Kumar C (2021) Orthogonal learning-based gray wolf optimizer for identifying the uncertain parameters of various photovoltaic models. Optik (Stuttg). https://doi.org/10.1016/j.ijleo.2021.167973

    Article  Google Scholar 

  108. Wang J, Xu YP, She C, Xu P, Bagal HA (2022) Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm. Energy. https://doi.org/10.1016/j.energy.2021.122800

    Article  Google Scholar 

  109. Hao P, Sobhani B (2021) Application of the improved chaotic grey wolf optimization algorithm as a novel and efficient method for parameter estimation of solid oxide fuel cells model. Int J Hydrog Energy 46(73):36454–36465. https://doi.org/10.1016/j.ijhydene.2021.08.174

    Article  Google Scholar 

  110. Xie Q, Guo Z, Liu D, Chen Z, Shen Z, Wang X (2021) Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm. Renew Energy 176:447–458. https://doi.org/10.1016/j.renene.2021.05.058

    Article  Google Scholar 

  111. Song C, Wang X, Liu Z, Chen H (2022) Evaluation of axis straightness error of shaft and hole parts based on improved grey wolf optimization algorithm. Measurement. https://doi.org/10.1016/j.measurement.2021.110396

    Article  Google Scholar 

  112. Vashishtha G, Kumar R (2022) An amended grey wolf optimization with mutation strategy to diagnose bucket defects in Pelton wheel. Measurement. https://doi.org/10.1016/j.measurement.2021.110272

    Article  Google Scholar 

  113. Panwar LK, Reddy S, Verma A, Panigrahi BK, Kumar R (2018) Binary grey wolf optimizer for large scale unit commitment problem. Swarm Evol Comput 38:251–266. https://doi.org/10.1016/j.swevo.2017.08.002

    Article  Google Scholar 

  114. Hoballah A, Azmy AM (2023) Constrained economic dispatch following generation outage for hot spinning reserve allocation using hybrid grey wolf optimizer. Alex Eng J 62:169–180. https://doi.org/10.1016/j.aej.2022.07.033

    Article  Google Scholar 

  115. Bedi P, Das S, Goyal SB, Shukla PK, Mirjalili S, Kumar M (2022) A novel routing protocol based on grey wolf optimization and Q learning for wireless body area network. Expert Syst Appl 210:118477. https://doi.org/10.1016/j.eswa.2022.118477

    Article  Google Scholar 

  116. Shahjalal M, Farhana N, Roy P, Razzaque MA, Kaur K, Hassan MM (2022) A Binary gray wolf optimization algorithm for deployment of virtual network functions in 5G hybrid cloud. Comput Commun 193:63–74. https://doi.org/10.1016/j.comcom.2022.06.041

    Article  Google Scholar 

  117. Majumder P, Eldho TI (2020) Artificial neural network and grey wolf optimizer based surrogate simulation-optimization model for groundwater remediation. Water Resour Manage 34(2):763–783. https://doi.org/10.1007/s11269-019-02472-9

    Article  Google Scholar 

  118. Afroozeh M, Abdolmohammadi HR, Nazari ME (2022) Economic-environmental dispatch of integrated thermal-CHP-heat only system with temperature drop of the heat pipeline using mutant gray wolf optimization algorithm. Electric Power Syst Res 212:108227. https://doi.org/10.1016/j.epsr.2022.108227

    Article  Google Scholar 

  119. Al-Momani A, Mohamed O, Abu Elhaija W (2022) Multiple processes modeling and identification for a cleaner supercritical power plant via grey wolf optimizer. Energy. https://doi.org/10.1016/j.energy.2022.124090

    Article  Google Scholar 

  120. Li Y et al (2022) Multi-step ahead wind speed forecasting approach coupling maximal overlap discrete wavelet transform, improved grey wolf optimization algorithm and long short-term memory. Renew Energy 196:1115–1126. https://doi.org/10.1016/j.renene.2022.07.016

    Article  Google Scholar 

  121. Song J, Wang J, Lu H (2018) A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting. Appl Energy 215:643–658. https://doi.org/10.1016/j.apenergy.2018.02.070

    Article  Google Scholar 

  122. Zhang Z, Zhang Y (2021) Application of a parameter-shifted grey wolf optimizer for earthquake dynamic rupture inversion. Earthq Sci 34(6):507–521. https://doi.org/10.29382/eqs-2021-0049

    Article  Google Scholar 

  123. Samuel OD, Okwu MO, Oyejide OJ, Taghinezhad E, Afzal A, Kaveh M (2020) Optimizing biodiesel production from abundant waste oils through empirical method and grey wolf optimizer. Fuel. https://doi.org/10.1016/j.fuel.2020.118701

    Article  Google Scholar 

  124. Kharwar PK, Verma RK (2020) Exploration of nature inspired Grey wolf algorithm and Grey theory in machining of multiwall carbon nanotube/polymer nanocomposites. Eng Comput 38(2):1127–1148. https://doi.org/10.1007/s00366-020-01103-x

    Article  Google Scholar 

  125. Deep K (2022) A random walk Grey wolf optimizer based on dispersion factor for feature selection on chronic disease prediction. Expert Syst Appl 206:117864. https://doi.org/10.1016/j.eswa.2022.117864

    Article  Google Scholar 

  126. Ramasamy Rajammal R, Mirjalili S, Ekambaram G, Palanisamy N (2022) Binary grey wolf optimizer with mutation and adaptive K-nearest Neighbour for feature selection in Parkinson’s disease diagnosis. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2022.108701

    Article  Google Scholar 

  127. Barman B, Dewang RK, Mewada A (2022) Facial recognition using grey wolf optimization. Mater Today Proc 58:273–285. https://doi.org/10.1016/j.matpr.2022.02.161

    Article  Google Scholar 

  128. Martin B, Marot J, Bourennane S (2019) Mixed grey wolf optimizer for the joint denoising and unmixing of multispectral images. Appl Soft Comput J 74:385–410. https://doi.org/10.1016/j.asoc.2018.10.019

    Article  Google Scholar 

  129. Yu X, Wu X (2022) Ensemble grey wolf optimizer and its application for image segmentation. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2022.118267

    Article  Google Scholar 

  130. Gopatoti A, Vijayalakshmi P (2022) CXGNet: a tri-phase chest X-ray image classification for COVID-19 diagnosis using deep CNN with enhanced grey-wolf optimizer. Biomed Signal Process Control. https://doi.org/10.1016/j.bspc.2022.103860

    Article  Google Scholar 

  131. Karakoyun M, Gülcü Ş, Kodaz H (2021) D-MOSG: discrete multi-objective shuffled gray wolf optimizer for multi-level image thresholding. Eng Sci Technol Int J 24(6):1455–1466. https://doi.org/10.1016/j.jestch.2021.03.011

    Article  Google Scholar 

  132. Yu H et al (2022) Image segmentation of leaf spot diseases on maize using multi-stage Cauchy-enabled grey wolf algorithm. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2021.104653

    Article  Google Scholar 

  133. Niu P, Niu S, Liu N, Chang L (2019) The defect of the grey wolf optimization algorithm and its verification method. Knowl Based Syst 171:37–43. https://doi.org/10.1016/j.knosys.2019.01.018

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Geran Insentif Putra Muda (GP-IPM) fund (Grant vot. number 9484800) and the Malaysia Fundamental Research Grant Scheme (FRGS) fund (Grant vot. number 5524740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azizan As’arry.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., As’arry, A., Hassan, M.K. et al. Review of the grey wolf optimization algorithm: variants and applications. Neural Comput & Applic 36, 2713–2735 (2024). https://doi.org/10.1007/s00521-023-09202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-09202-8

Keywords

Navigation