Skip to main content
Log in

On multiplicity and concentration for a magnetic Kirchhoff–Schrödinger equation involving critical exponents in \(\mathbb {R}^{2}\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we prove the multiplicity and concentration behavior of complex-valued solutions for the following Kirchhoff–Schrödinger equation with magnetic field

$$\begin{aligned} -\bigg (a\varepsilon ^2+b\varepsilon [u]^2_{A/\varepsilon }\bigg )\Delta _{A/\varepsilon } u+V(x)u=f(|u|^2)u,\quad x\in \mathbb {R}^{2}, \end{aligned}$$

where \(\varepsilon >0\) is a small parameter, the nonlinearity f is involved in critical exponential growth in the sense of Trudinger–Moser inequality and both \(V:\mathbb {R}^{2}\rightarrow \mathbb {R}\) and \(A:\mathbb {R}^{2}\rightarrow \mathbb {R}^{2}\) are continuous potential and magnetic potential, respectively. Imposing a local constraint of potential V(x) first introduced from del Pino and Felmer, we get the multiplicity of solutions by way of the relationship between the number of the solutions and the topology of the set with V attaining the minimum. Our strategy of main proof is based on the variational methods combined with the penalization technique, the Trudinger–Moser inequality and Ljusternik–Schnirelmann theory, and our result is still new even without magnetic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Alves, C.O., Figueiredo, G.M.: On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \(\mathbb{R} ^{N}\). J. Differ. Equ. 246, 1288–311 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, V., d’Avenia, P.: Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity. J. Differ. Equ. 264(5), 3336–3368 (2018)

    Article  Google Scholar 

  3. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.B.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb{R} ^{2}\). J. Differ. Equ. 261, 1933–1972 (2016)

    Article  Google Scholar 

  4. Arioli, G., Szulkin, A.: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170, 277–295 (2003)

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, V.: Multiplicity and concentration results for a fractional Schrödinger–Poisson type equation with magnetic field. Proc. R. Soc. Edinb. Sect. A 150(2), 655–694 (2020)

    Article  Google Scholar 

  6. Bonheure, D., Cingolani, S., Nys, M.; Nonlinear Schrödinger equation: concentration on circles driven by an external magnetic filed. Calc. Var. Partial Differ. Equ. 55, Art.82 (2016)

  7. Bartsch, T., Ding, Y.: On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313, 15–37 (1999)

    Article  MathSciNet  Google Scholar 

  8. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–45 (1983)

    Article  MathSciNet  Google Scholar 

  9. Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1–13 (1997)

    Article  MathSciNet  Google Scholar 

  10. Cingolani, S., Lazzo, M.: Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differ. Equ. 160, 118–138 (2000)

    Article  Google Scholar 

  11. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb{R} ^{2}\). Commun. Partial Differ. Equ. 17, 407–435 (1992)

    Article  MathSciNet  Google Scholar 

  12. Chen, J., Li, Y.Q.: Existence and concentration of ground state solutions for Kirchhoff type equations with general nonlinearities. Math. Methods Appl. Sci. 45(10), 6302–6324 (2022)

    Article  MathSciNet  Google Scholar 

  13. Chen, S.T., Rǎdulescu, V.D., Tang, X.H., Wen, L.X.: Planar Kirchhoff equations with critical exponential growth and trapping potential. Math. Z. 302, 1061–1089 (2022)

    Article  MathSciNet  Google Scholar 

  14. d’Avenia, P., Ji, C.: Multiplicity and concentration results for a magnetic Schrödinger equation with exponential critical growth in \(\mathbb{R} ^{2}\). Int. Math. Res. Not. 2022(2), 862–897 (2022)

    Article  Google Scholar 

  15. d’Avenia, P., Squassina, M.: Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 24(1), 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  16. del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  17. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \(\mathbb{R} ^{2}\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139–153 (1995)

    Article  MathSciNet  Google Scholar 

  18. Figueiredo, G.M., Severo, U.B.: Ground state solution for a Kirchhoff problem with exponential critical growth. Milan J. Math. 84(1), 23–39 (2016)

    Article  MathSciNet  Google Scholar 

  19. Furtado, M.F., Zanata, H.R.: Kirchhoff–Schrödinger equations in \(\mathbb{R}^{2}\) with critical exponential growth and indefinite potential. Commun. Contemp. Math. 23(7), Paper No. 2050030 (2021)

  20. Figueiredo, G.M., Santos, J.R.: Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method. ESAIM Control Optim. Calc. Var. 20(2), 389–415 (2014)

    Article  MathSciNet  Google Scholar 

  21. Fiscella, A., Pinamonti, A., Vecchi, E.: Multiplicity results for magnetic fractional problems. J. Differ. Equ. 263, 4617–4633 (2017)

    Article  MathSciNet  Google Scholar 

  22. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R} ^{3}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  MathSciNet  Google Scholar 

  23. He, X.M., Zou, W.M.: Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation. Manuscr. Math. 158(1–2), 159–203 (2019)

    Article  MathSciNet  Google Scholar 

  24. Ji, C., Radulescu, V.D.: Concentration phenomena for magnetic Kirchhoff equations with critical growth. Discrete Contin. Dyn. Syst. 41(12), 5551–5577 (2021)

    Article  MathSciNet  Google Scholar 

  25. Ji, C., Rǎdulescu, V.D.: Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J. Differ. Equ. 306, 251–279 (2022)

    Article  MathSciNet  Google Scholar 

  26. Kavian, O.: Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques. Springer, Paris (1993)

    Google Scholar 

  27. Li, G.: Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenn. Math. 15, 27–36 (1990)

    Article  MathSciNet  Google Scholar 

  28. Lions, J.L.: On some questions in boundary value problems of mathematical physics. North-Holland Math. Stud. 30, 284–346 (1978)

    Article  MathSciNet  Google Scholar 

  29. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  30. Lin, X.L., Zheng, S.Z.: Multiplicity and concentration of solutions for a class of magnetic Schrödinger–Poisson system with double critical growths. Z. Angew. Math. Phys. 74(3), Paper No. 94 (2023)

  31. Lin, X.L., Zheng, S.Z., Feng, Z.S.: Multiple solutions of \(p\)-fractional Schrödinger–Choquard–Kirchhoff equations with Hardy–Littlewood–Sobolev critical exponents. Adv. Nonlinear Stud. 23(1), Paper No. 20220059 (2023)

  32. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006)

    Article  MathSciNet  Google Scholar 

  33. Pohozaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. 96, 152–168 (1975)

    MathSciNet  Google Scholar 

  34. Pinamonti, A., Squassina, M., Vecchi, E.: Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula. Adv. Calc. Var. 12(3), 225–252 (2019)

    Article  MathSciNet  Google Scholar 

  35. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  36. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, 24. Birkhäuser Boston Inc, Boston (1996)

    Google Scholar 

  37. Xiang, M.Q., Wang, F.: Fractional Schrödinger–Poisson–Kirchhoff type systems involving critical nonlinearities. Nonlinear Anal. 164, 1–26 (2017)

    Article  MathSciNet  Google Scholar 

  38. Xiang, M.Q., Pucci, P., Squassina, M., Zhang, B.L.: Nonlocal Schrödinger–Kirchhoff equations with external magnetic field. Discrete Contin. Dyn. Syst. 37, 1631–1649 (2017)

    Article  MathSciNet  Google Scholar 

  39. Zhang, L.M., Tang, X.H., Chen, P.: On the planar Kirchhoff-type problem involving supercritical exponential growth. Adv. Nonlinear Anal. 11, 1412–1446 (2022)

    Article  MathSciNet  Google Scholar 

  40. Zhang, J., Bao, X., Zhang, J.J.: Existence and concentration of solutions to Kirchhoff-type equations in \(\mathbb{R}^{2}\) with steep potential well vanishing at infinity and exponential critical nonlinearities. Adv. Nonlinear Anal. 12(1), Paper No. 20220317 (2023)

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China Grant Nos. 12071021 and 12271021.

Author information

Authors and Affiliations

Authors

Contributions

XL involved in formal analysis, investigation, writing—original draft. SZ took part in conceptualization, methodology, supervision, project administration, writing—review and editing.

Corresponding author

Correspondence to Shenzhou Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Zheng, S. On multiplicity and concentration for a magnetic Kirchhoff–Schrödinger equation involving critical exponents in \(\mathbb {R}^{2}\). Z. Angew. Math. Phys. 75, 112 (2024). https://doi.org/10.1007/s00033-024-02260-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02260-5

Keywords

Mathematics Subject Classification

Navigation