Skip to main content
Log in

Multiplicity and Concentration of Solutions for a Fractional Kirchhoff Equation with Magnetic Field and Critical Growth

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We investigate the existence, multiplicity and concentration of nontrivial solutions for the following fractional magnetic Kirchhoff equation with critical growth:

$$\begin{aligned} \left( a\varepsilon ^{2s}+b\varepsilon ^{4s-3} [u]_{A/\varepsilon }^{2}\right) (-\Delta )_{A/\varepsilon }^{s}u+V(x)u=f(|u|^{2})u+|u|^{2^{*}_{s}-2}u \quad \text{ in } \mathbb {R}^{3}, \end{aligned}$$

where \(\varepsilon \) is a small positive parameter, \(a, b>0\) are fixed constants, \(s\in (\frac{3}{4}, 1)\), \(2^{*}_{s}=\frac{6}{3-2s}\) is the fractional critical exponent, \((-\Delta )^{s}_{A}\) is the fractional magnetic Laplacian, \(A:\mathbb {R}^{3}\rightarrow \mathbb {R}^{3}\) is a smooth magnetic potential, \(V:\mathbb {R}^{3}\rightarrow \mathbb {R}\) is a positive continuous potential verifying the global condition due to Rabinowitz (Z Angew Math Phys 43:270–291, 1992), and \(f:\mathbb {R}\rightarrow \mathbb {R}\) is a \(C^{1}\) subcritical nonlinearity. Due to the presence of the magnetic field and the critical growth of the nonlinearity, several difficulties arise in the study of our problem and a careful analysis will be needed. The main results presented here are established by using minimax methods, concentration compactness principle of Lions (Ann Inst H Poincaré Anal Non Linéaire 1(2):109–145, 1984), a fractional Kato’s type inequality and the Ljusternik–Schnirelmann theory of critical points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49(1), 85–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Figueiredo, G.M., Furtado, M.F.: Multiple solutions for a nonlinear Schrödinger equation with magnetic fields. Commun. Partial Differ. Equ. 36, 1565–1586 (2011)

    Article  MATH  Google Scholar 

  3. Alves, C.O., Miyagaki, O.H.: Existence and concentration of solution for a class of fractional elliptic equation in \({\mathbb{R}}^{N}\) via penalization method. Calc. Var. Partial Differ. Equ. 55, Art. 47, 19 pp (2016)

  4. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, V.: Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method. Ann. Mat. Pura Appl. (4) 196(6), 2043–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, V.: Boundedness and decay of solutions for some fractional magnetic Schrödinger equations in \(\mathbb{R}^{N}\). Milan J. Math. 86(2), 125–136 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio, V.: Existence and concentration results for some fractional Schrödinger equations in \({\mathbb{R}}^{N}\) with magnetic fields. Commun. Partial Differ. Equ. (2019). https://doi.org/10.1080/03605302.2019.1581800. (in press)

    Article  MATH  Google Scholar 

  8. Ambrosio, V., d’Avenia, P.: Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity. J. Differ. Equ. 264(5), 3336–3368 (2018)

    Article  ADS  MATH  Google Scholar 

  9. Ambrosio, V., Isernia, T.: A multiplicity result for a fractional Kirchhoff equation in \({\mathbb{R}}^{N}\) with a general nonlinearity. Commun. Contemp. Math. 20(5), 1750054, 17 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ambrosio, V., Isernia, T.: Concentration phenomena for a fractional Schrödinger–Kirchhoff type problem. Math. Methods Appl. Sci. 41(2), 615–645 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernstein, S.: Sur une classe d’équations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS Sér. Math. [Izvestia Akad. Nauk SSSR] 4, 17–26 (1940)

    MathSciNet  MATH  Google Scholar 

  13. Binlin, Z., Squassina, M., Zhang, X.: Fractional NLS equations with magnetic field, critical frequency and critical growth. Manuscr. Math. 155(1–2), 115–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cingolani, S.: Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field. J. Differ. Equ. 188, 52–79 (2003)

    Article  ADS  MATH  Google Scholar 

  16. Cingolani, S., Lazzo, M.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1–13 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cingolani, S., Secchi, S.: Semiclassical states for NLS equations with magnetic potentials having polynomial growths. J. Math. Phys. 46, 19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cotsiolis, A., Tavoularis, N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295(1), 225–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dávila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256(2), 858–892 (2014)

    Article  MATH  Google Scholar 

  20. d’Avenia, P., Squassina, M.: Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 24(1), 1–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of \({\mathbb{R}}^n\), Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa. viii+152 pp. (2017)

  23. Esteban, M., Lions, P.L.: Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. In: Partial differential equations and the calculus of variations, vol. I, pp. 401–449. Progress in Nonlinear Differential Equations and Applications, 1, Birkhäuser Boston, Boston, MA (1989)

  24. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  25. Figueiredo, G.M., Santos, J.R.: Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method. ESAIM Control Optim. Calc. Var. 20(2), 389–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fiscella, A., Pinamonti, A., Vecchi, E.: Multiplicity results for magnetic fractional problems. J. Differ. Equ. 263, 4617–4633 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fiscella, A., Pucci, P.: \(p\)-fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal. Real World Appl. 35, 350–378 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fiscella, A., Vecchi, E.: Bifurcation and multiplicity results for critical magnetic fractional problems. Electron. J. Differ. Equ., Paper No. 153, 18 pp (2018)

  30. Hajaiej, H.: Schrödinger systems arising in nonlinear optics and quantum mechanics: part I. Math. Models Methods Appl. Sci. 22(7), 1250010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hajaiej, H.: On the optimality of the assumptions used to prove the existence and symmetry of minimizers of some fractional constrained variational problems. Ann. Henri Poincaré 14(5), 1425–1433 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. He, Y., Li, G., Peng, S.: Concentrating bound states for Kirchhoff type problems in \(\mathbb{R}^{3}\) involving critical Sobolev exponents. Adv. Nonlinear Stud. 14(2), 483–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R}^{3}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Ichinose, T.: Magnetic relativistic Schrödinger operators and imaginary-time path integrals. In: Mathematical Physics, Spectral Theory and Stochastic Analysis. Operator Theory: Advances and Applications, vol. 232, pp. 247–297. Birkhäuser/Springer, Basel (2013)

  35. Isernia, T.: Positive solution for nonhomogeneous sublinear fractional equations in \(\mathbb{R}^N\). Complex Var. Elliptic Equ. 63(5), 689–714 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kato, T.: Schrödinger operators with singular potentials. Israel J. Math. 13, 135–148 (1973). In: In: Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972)

  37. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  38. Kurata, K.: Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 41, 763–778 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Liang, S., Repovs̆, D., Zhang, B.: On the fractional Schrödinger–Kirchhoff equations with electromagnetic fields and critical nonlinearity. Comput. Math. Appl. 75(5), 1778–1794 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics, p. xvi+293. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  42. Lions, J.L.: On some questions in boundary value problems of mathematical physics. North-Holland Math. Stud. 30, 284–346 (1978). Contemporary developments in continuum mechanics and partial differential equations. In: Proceedings of International Symposium on Continuum Mechanics and Partial Differential Equations, The Institute of Mathematics, Universidade Federal do Rio de Janeiro, Rio de Janeiro. North-Holland, Amsterdam (1977)

  43. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Liu, Z., Squassina, M., Zhang, J.: Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension. NoDEA Nonlinear Differ. Equ. Appl. 24(4), Art. 50, 32 pp. (2017)

  45. Mingqi, X., Pucci, P., Squassina, M., Zhang, B.: Nonlocal Schrödinger–Kirchhoff equations with external magnetic field. Discret. Contin. Dyn. Syst. 37(3), 1631–1649 (2017)

    Article  MATH  Google Scholar 

  46. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, vol. 162. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  47. Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  48. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50, 799–829 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pohožaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. 96, 152–166 (1975)

    MathSciNet  Google Scholar 

  50. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  51. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-adjointness, p. xv+361. Academic Press, New-York-London (1975)

    MATH  Google Scholar 

  52. Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367(1), 67–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253(7), 2314–2351 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston Inc, Boston (1996)

    Google Scholar 

Download references

Acknowledgements

The author would like to express his sincere gratitude to the referee for all insightful comments and valuable suggestions, which enabled to improve this version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Ambrosio.

Additional information

Communicated by Claude-Alain Pillet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, V. Multiplicity and Concentration of Solutions for a Fractional Kirchhoff Equation with Magnetic Field and Critical Growth. Ann. Henri Poincaré 20, 2717–2766 (2019). https://doi.org/10.1007/s00023-019-00803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00803-5

Mathematics Subject Classification

Navigation