Skip to main content
Log in

Tumor boundary instability induced by nutrient consumption and supply

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We investigate the tumor boundary instability induced by nutrient consumption and supply based on a Hele-Shaw model. The model describes the geometric evolution of the tumor region and is derived from taking the incompressible limit of a cell density model, which leads to the pressure vanishing on the free boundary. We investigate the boundary behaviors under two different nutrient supply regimes, in vitro and in vivo, where in the former case the supply is adequate and in the latter case the supply is deficient. Our main conclusion is that by investigating typical solutions of the tumor-nutrient model with the asymptotic analysis with respect to the domain perturbation, the tumor boundary in the in vitro regime is shown to be stable regardless of the nutrient consumption rate. However, boundary instability occurs when the nutrient consumption rate exceeds a certain threshold in the in vivo regime, and the bifurcation threshold has a monotonic dependence on the frequency of the domain perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cristini, V., Lowengrub, J.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511781452

    Book  Google Scholar 

  2. Cristini, V., Koay, E., Wang, Z.: An Introduction to Physical Oncology: How Mechanistic Mathematical Modeling Can Improve Cancer Therapy Outcomes, 1st edn. Chapman and Hall/CRC, London (2016). https://doi.org/10.4324/9781315374499

    Book  Google Scholar 

  3. Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004). https://doi.org/10.1016/j.bulm.2003.11.002

    Article  MathSciNet  MATH  Google Scholar 

  4. Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), R1–R9 (2010). https://doi.org/10.1088/0951-7715/23/1/r01

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrne, H.M., Alarcon, T., Owen, M.R., Webb, S.D., Maini, P.K.: Modelling aspects of cancer dynamics: a review. Philos. Trans. A Math. Phys. Eng. Sci. 2006(364), 1563–78 (1843). https://doi.org/10.1098/rsta.2006.1786

    Article  Google Scholar 

  6. Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth. SIAM Rev. 49(2), 179–208 (2007). https://doi.org/10.1137/S0036144504446291

    Article  MathSciNet  MATH  Google Scholar 

  7. Greenspan, H.P.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56(1), 229–242 (1976). https://doi.org/10.1016/S0022-5193(76)80054-9

    Article  MathSciNet  Google Scholar 

  8. Byrne, H.M., Chaplin, M.A.: Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135(2), 187–216 (1996). https://doi.org/10.1016/0025-5564(96)00023-5

    Article  MATH  Google Scholar 

  9. Chaplain, M.A.J.: Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math. Comput. Model. 23(6), 47–87 (1996). https://doi.org/10.1016/0895-7177(96)00019-2

    Article  MATH  Google Scholar 

  10. Zheng, X., Wise, S.M., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67(2), 211–59 (2005). https://doi.org/10.1016/j.bulm.2004.08.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman, A., Hu, B.: Bifurcation for a free boundary problem modeling tumor growth by Stokes equation. SIAM J. Math. Anal. 39(1), 174–194 (2007). https://doi.org/10.1137/060656292

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman, A., Reitich, F.: Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38(3), 262–84 (1999). https://doi.org/10.1007/s002850050149

    Article  MathSciNet  MATH  Google Scholar 

  13. Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46(3), 191–224 (2003). https://doi.org/10.1007/s00285-002-0174-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, A., Reitich, F.: Quasistatic motion of a capillary drop I. The two-dimensional case. J. Differ. Equ. 178(1), 212–263 (2002). https://doi.org/10.1006/jdeq.2000.4007

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedman, A., Reitich, F.: Quasi-static motion of a capillary drop, II: the three-dimensional case. J. Differ. Equ. 186(2), 509–557 (2002). https://doi.org/10.1016/S0022-0396(02)00034-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Franks, S.J., King, J.R.: Interactions between a uniformly proliferating tumour and its surroundings: uniform material properties. Math. Med. Biol. 20(1), 47–89 (2003). https://doi.org/10.1093/imammb/20.1.47

    Article  MATH  Google Scholar 

  17. Franks, S.J., King, J.R.: Interactions between a uniformly proliferating tumour and its surroundings: Stability analysis for variable material properties. Int. J. Eng. Sci. 47(11–12), 1182–1192 (2009). https://doi.org/10.1016/j.ijengsci.2009.07.004

    Article  MathSciNet  MATH  Google Scholar 

  18. King, J.R., Franks, S.J.: Mathematical Modelling of Nutrient-limited Tissue Growth. In: Figueiredo, I.N., Rodrigues, J.F., Santos, L. (eds.) Free Boundary Problems. International Series of Numerical Mathematics, vol 154. Birkhäuser, Basel (2006). https://doi.org/10.1007/978-3-7643-7719-9-27

  19. Pham, K., Frieboes, H.B., Cristini, V., et al.: Predictions of tumour morphological stability and evaluation against experimental observations. J. R. Soc. Interface 8(54), 16–29 (2011). https://doi.org/10.1098/rsif.2010.0194

    Article  Google Scholar 

  20. Turian, E., Liu, K., Lowengrub, J., et al.: Morphological stability of an elastic tumor-host interface. J. Comput. Appl. Math. 362, 410–422 (2019). https://doi.org/10.1016/j.cam.2018.06.044

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu, M.J., Liu, C., Li, S.: Nonlinear simulation of an elastic tumor-host interface. Comput. Math. Biophys. 7(1), 25–47 (2019). https://doi.org/10.1515/cmb-2019-0003

    Article  MathSciNet  MATH  Google Scholar 

  22. Pham, K., Turian, E., Liu, K., et al.: Nonlinear studies of tumor morphological stability using a two-fluid flow model. J. Math. Biol. 77, 671–709 (2018). https://doi.org/10.1007/s00285-018-1212-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Fontelos, M.A., Friedman, A.: Symmetry-breaking bifurcations of free boundary problems in three dimensions. Asymptot. Anal. 35(3–4), 187–206 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Friedman, A., Reitich, F.: Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Am. Math. Soc. 353(4), 1587–1634 (2001). https://doi.org/10.2307/221871

    Article  MathSciNet  MATH  Google Scholar 

  25. Friedman, A., Hu, B.: Bifurcation from stability to instability for a free boundary problem arising in a tumor model. Arch. Ration. Mech. Anal. 180(2), 293–330 (2006). https://doi.org/10.1007/s00205-005-0408-z

    Article  MathSciNet  MATH  Google Scholar 

  26. Friedman, A., Hu, B.: Asymptotic stability for a free boundary problem arising in a tumor model. J. Differ. Equ. 227(2), 598–639 (2006). https://doi.org/10.1016/j.jde.2005.09.008

    Article  MathSciNet  MATH  Google Scholar 

  27. Friedman, A., Hu, B.: Stability and instability of Liapunov–Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model. Trans. Am. Math. Soc. 360(10), 5291–5342 (2008). https://doi.org/10.1090/S0002-9947-08-04468-1

    Article  MathSciNet  MATH  Google Scholar 

  28. Friedman, Avner: A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth. Interfaces Free Bound. 8(2), 247–261 (2006). https://doi.org/10.4171/IFB/142

    Article  MathSciNet  MATH  Google Scholar 

  29. Friedman, A., Hu, B.: Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation. J. Math. Anal. Appl. 327(1), 643–664 (2007). https://doi.org/10.1016/j.jmaa.2006.04.034

    Article  MathSciNet  MATH  Google Scholar 

  30. Macklin, P., Lowengrub, J.: Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol. 245(4), 677–704 (2007). https://doi.org/10.1016/j.jtbi.2006.12.004

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu, M.J., Liu, C., Lowengrub, J., et al.: Complex far-field geometries determine the stability of solid tumor growth with chemotaxis. Bull. Math. Biol. 82(3), 1–41 (2020). https://doi.org/10.1007/s11538-020-00716-z

    Article  MathSciNet  MATH  Google Scholar 

  32. Lu, M.J., Hao, W., Liu, C., et al.: Nonlinear simulation of vascular tumor growth with chemotaxis and the control of necrosis. J. Comput. Phys. 459, 111153 (2022). https://doi.org/10.1016/j.jcp.2022.111153

    Article  MathSciNet  MATH  Google Scholar 

  33. Byrne, H., Drasdo, D.: Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58(4–5), 657–87 (2009). https://doi.org/10.1007/s00285-008-0212-0

    Article  MathSciNet  MATH  Google Scholar 

  34. Aronson, D.G., 0. Gil & Vázquez, J.L.: Limit behaviour of focusing solutions to nonlinear diffusions. Commun. Partial Differ. Equ. 23(1–2), 197–206 (1998). https://doi.org/10.1080/03605309808821347

  35. Gil, O.C., Fernando, Q.: Convergence of the porous media equation to Hele-Shaw. Nonlinear Anal. Theory Methods Appl. 44, 1111–1131 (2001). https://doi.org/10.1016/S0362-546X(99)00325-9

    Article  MathSciNet  MATH  Google Scholar 

  36. Igbida, N.: The mesa-limit of the porous-medium equation and the Hele-Shaw problem. Differ. Integral Equ. 15(2), 129–146 (2002). https://doi.org/10.57262/die/1356060869

    Article  MathSciNet  MATH  Google Scholar 

  37. Kim, I.C.: Uniqueness and Existence Results on the Hele-Shaw and the Stefan Problems. Arch. Rational Mech. Anal. 168(4), 299–328 (2003). https://doi.org/10.1007/s00205-003-0251-z

    Article  MathSciNet  MATH  Google Scholar 

  38. Kim, I.C., Mellet, A.: Homogenization of a Hele-Shaw problem in periodic and random media. Arch. Ration. Mech. Anal. 194(2), 507–530 (2009). https://doi.org/10.1007/s00205-008-0161-1

    Article  MathSciNet  MATH  Google Scholar 

  39. Perthame, B., Quirós, F., Vázquez, J.L.: The Hele-Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal. 212(1), 93–127 (2014). https://doi.org/10.1007/s00205-013-0704-y

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, J.G., Tang, M., Wang, L., et al.: An accurate front capturing scheme for tumor growth models with a free boundary limit. J. Comput. Phys. 364, 73–94 (2018). https://doi.org/10.1016/j.jcp.2018.03.013

    Article  MathSciNet  MATH  Google Scholar 

  41. Guillen, N., Kim, I., Mellet, A.: A Hele-Shaw limit without monotonicity. Arch. Ration. Mech. Anal. 243(2), 829–868 (2022). https://doi.org/10.1007/s00205-021-01750-4

    Article  MathSciNet  MATH  Google Scholar 

  42. Perthame, B., Tang, M., Vauchelet, N.: Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient. Math. Models Methods Appl. Sci. 24(13), 2601–2626 (2014). https://doi.org/10.1142/S0218202514500316

    Article  MathSciNet  MATH  Google Scholar 

  43. Mellet, A., Perthame, B., Quiros, F.: A Hele-Shaw problem for tumor growth. J. Funct. Anal. 273(10), 3061–3093 (2017). https://doi.org/10.1016/j.jfa.2017.08.009

    Article  MathSciNet  MATH  Google Scholar 

  44. David, N., Perthame, B.: Free boundary limit of a tumor growth model with nutrient. Journal de Mathématiques Pures et Appliquées 155, 62–82 (2021). https://doi.org/10.1016/j.matpur.2021.01.007

    Article  MathSciNet  MATH  Google Scholar 

  45. Perthame, B., Vauchelet, N.: Incompressible limit of a mechanical model of tumour growth with viscosity. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2050), 20140283 (2015). https://doi.org/10.1098/rsta.2014.0283

    Article  MathSciNet  MATH  Google Scholar 

  46. David, N., Debiec, T., Perthame, B.: Convergence rate for the incompressible limit of nonlinear diffusion-advection equations. Annales de l’Institut Henri Poincaré C (2022). https://doi.org/10.4171/AIHPC/53

    Article  Google Scholar 

  47. Kim, I.C., Perthame, B., Souganidis, P.E.: Free boundary problems for tumor growth: a viscosity solutions approach. Nonlinear Anal. 138, 207–228 (2016). https://doi.org/10.1016/j.na.2016.01.019

    Article  MathSciNet  MATH  Google Scholar 

  48. Kim, I., Požár, N.: Porous medium equation to Hele-Shaw flow with general initial density. Trans. Am. Math. Soc. 370(2), 873–909 (2018). https://doi.org/10.1090/tran/6969

    Article  MathSciNet  MATH  Google Scholar 

  49. Kim, I., Požár, N., Woodhouse, B.: Singular limit of the porous medium equation with a drift. Adv. Math. 349, 682–732 (2019). https://doi.org/10.1016/j.aim.2019.04.017

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, J.G., Tang, M., Wang, L., et al.: Toward understanding the boundary propagation speeds in tumor growth models. SIAM J. Appl. Math. 81(3), 1052–1076 (2021). https://doi.org/10.1137/19M1296665

    Article  MathSciNet  MATH  Google Scholar 

  51. Dou, X., Liu, J.G., Zhou, Z.: A tumor growth model with autophagy: the reaction-(cross-) diffusion system and its free boundary limit. Discrete Contin. Dyn. Syst. B 28(3), 1964–1992 (2023). https://doi.org/10.3934/dcdsb.2022154

    Article  MathSciNet  MATH  Google Scholar 

  52. Chatelain, C., Ciarletta, P., Amar, M.B.: Morphological changes in early melanoma development: influence of nutrients, growth inhibitors and cell-adhesion mechanisms. J. Theor. Biol. 290, 46–59 (2011). https://doi.org/10.1016/j.jtbi.2011.08.029

    Article  MathSciNet  MATH  Google Scholar 

  53. Ben-Jacob, E., Schochet, O., Tenenbaum, A., et al.: Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368(6466), 46–49 (1994). https://doi.org/10.1038/368046a0

    Article  Google Scholar 

  54. Tang, M., Vauchelet, N., Cheddadi, I., et al.: Composite waves for a cell population system modeling tumor growth and invasion. In: Partial Differential Equations: Theory, Control and Approximation, pp. 401–429. Springer, Berlin (2014)

  55. Liu, Jian-Guo., Tang, Min, Wang, Li., Zhou, Zhennan: Analysis and computation of some tumor growth models with nutrient: from cell density models to free boundary dynamics. Discrete Contin. Dyn. Syst. B 24(7), 3011–3035 (2019). https://doi.org/10.3934/dcdsb.2018297

    Article  MathSciNet  MATH  Google Scholar 

  56. Perthame, B.: Some mathematical models of tumor growth. Université Pierre et Marie Curie-Paris, 6 (2016). https://www.ljll.math.upmc.fr/perthame/cours-M2.pdf

  57. Greenspan, H.P.: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51(4), 317–340 (1972). https://doi.org/10.1002/sapm1972514317

    Article  MATH  Google Scholar 

  58. Adam, J.A., Bellomo, N.: A Survey of Models for Tumor-Immune System Dynamics. Springer, Berlin (2012). https://doi.org/10.1007/978-0-8176-8119-7

    Book  MATH  Google Scholar 

  59. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: Congestion-driven dendritic growth. Discrete Contin. Dyn. Syst. 34(4), 1575 (2014). https://doi.org/10.3934/dcds.2014.34.1575

    Article  MathSciNet  MATH  Google Scholar 

  60. Chatelain, C., Balois, T., Ciarletta, P., et al.: Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture. New J. Phys. 13(11), 115013 (2011). https://doi.org/10.1088/1367-2630/13/11/115013

    Article  Google Scholar 

  61. Mullins, W.W., Sekerka, R.F.: Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34(2), 323–329 (1963). https://doi.org/10.1063/1.1702607

    Article  Google Scholar 

Download references

Acknowledgements

The work of Y.F. is supported by the National Key R &D Program of China, Project Number 2021YFA1001200. The work of M.T. is partially supported by Shanghai Pilot Innovation project, Project Number 21JC1403500, and NSFC grant number 11871340. The work of X.X. is supported by the National Key R &D Program of China, Project Number 2021YFA1001200, and the NSFC Youth program, Grant Number 12101278. The work of Z.Z. is supported by the National Key R &D Program of China, Project Number 2021YFA1001200, 2020YFA0712000, and NSFC Grant Number 12031013, 12171013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Properties of Bessel functions

Appendix A. Properties of Bessel functions

Since the solutions of the radial case are presented in terms of the second kind modified Bessel functions \(I_n(r)\) and \(K_n(r)\) (for \(n\in {\mathbb {N}}\)), we review some basic properties of them in this section. Firstly, \(I_n(r)\) and \(K_n(r)\) solve the differential equation:

$$\begin{aligned} r^2\frac{\textrm{d}^2f}{\textrm{d} r^2}+r\frac{\textrm{d} f}{\textrm{d} r}-(r^2+n^2)f=0, \end{aligned}$$
(120)

and are strict positive for any \(n\in {\mathbb {N}}\) and \(r>0\). For the derivatives, we have \(I_0'(r)=I_1(r)>0\) and \(K_0'(r)=-K_1(r)<0\), and for \(n\geqslant 1\):

$$\begin{aligned} I_n'(r)&=\frac{I_{n-1}(r)+I_{n+1}(r)}{2}>0, \end{aligned}$$
(121a)
$$\begin{aligned} K_n'(r)&=-\frac{K_{n-1}(r)+K_{n+1}(r)}{2}<0. \end{aligned}$$
(121b)

Therefore, \(I_j(r)\) are monotone increasing functions and \(K_j(r)\) are monotone decreasing functions. And the Bessel function \(I_n(r)\) satisfies

$$\begin{aligned} I_n'(r)-\frac{n}{r}I_n(r)=I_{n+1}(r), \end{aligned}$$
(122)

for any \(n\in {\mathbb {N}}^+\).

When \(r\rightarrow 0\), \(I_n(r)\) and \(K_n(r)\) possess the following asymptotes:

$$\begin{aligned}&I_n(r)\sim \frac{1}{\Gamma (n+1)}\left( \frac{r}{2}\right) ^n,\qquad \text {for}\quad n\in {\mathbb {N}}, \end{aligned}$$
(123a)
$$\begin{aligned}&K_n(r)\sim \frac{\Gamma (n)}{2}\left( \frac{r}{2}\right) ^{-n},\quad \qquad \text {for}\quad n\in {\mathbb {N}}^+, \end{aligned}$$
(123b)
$$\begin{aligned}&K_0(r)\sim -\ln {r}. \end{aligned}$$
(123c)

While as \(r\rightarrow +\infty \), \(I_n(r)\) and \(K_n(r)\) have the asymptotes:

$$\begin{aligned}&I_n(r)\sim \left( \frac{1}{2\pi r}\right) ^{1/2}e^{r}\left( 1-\frac{4n^2-1}{8r}+\frac{(4n^2-1)(4n^2-9)}{128 n^2}+O(\frac{1}{r^3})\right) , \end{aligned}$$
(124a)
$$\begin{aligned}&K_n(r)\sim \left( \frac{\pi }{2r}\right) ^{1/2}e^{-r}\left( 1+\frac{4n^2-1}{8r}+\frac{(4n^2-1)(4n^2-9)}{128 r^2}+O(\frac{1}{r^3})\right) . \end{aligned}$$
(124b)

By using (121), we can also derive the asymptotes for \(I'(r)\) and \(K'(r)\) for \(r\rightarrow +\infty \):

$$\begin{aligned}&I_n'(r)\sim \left( \frac{1}{2\pi r}\right) ^{1/2}e^{r}\left( 1-\frac{4n^2+3}{8r}+\frac{(4n^2-1)(4n^2+15)}{128 r^2}+O(\frac{1}{r^3})\right) , \end{aligned}$$
(125a)
$$\begin{aligned}&K_n'(r)\sim -\left( \frac{1}{2\pi r}\right) ^{1/2}e^{-r}\left( 1+\frac{4n^2+3}{8r}+\frac{(4n^2-1)(4n^2+15)}{128 r^2}+O(\frac{1}{r^3})\right) . \end{aligned}$$
(125b)

Furthermore, \(I_n(r)\) and \(K_n(r)\) satisfy the so-called Wronskians cross-product:

$$\begin{aligned} I_n(r)K_{n+1}(r)+I_{n+1}(r)K_n(r)=\frac{1}{r}\quad \text {for}\quad \forall n\in {\mathbb {N}}. \end{aligned}$$
(126)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Tang, M., Xu, X. et al. Tumor boundary instability induced by nutrient consumption and supply. Z. Angew. Math. Phys. 74, 107 (2023). https://doi.org/10.1007/s00033-023-02001-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02001-0

Keywords

Mathematics Subject Classification

Navigation