Skip to main content
Log in

Continuous modelling of a class of periodic elastic metamaterials with local rotation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, a new continuous model capable of representing a class of elastic metamaterials with strong local rotational and translational coupling is developed. This material model differs from that used in classical elasticity, as well as the micropolar continuum model. One-dimensional harmonic wave propagation is then studied based on this newly developed model, and the results are compared with those obtained from a corresponding discrete metamaterial model. It is interesting to observe that the new continuum model captures the main dynamic characteristics of the original metamaterial system and yields a dispersion relation close to that of the discrete model near the resonant frequency. This work provides a model for a class of new continuous metamaterials whose salient features cannot be captured by traditional models of continuum materials, as well as highlights the feasibility of using such continuum models to accurately predict the behaviour of discrete elastic metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Chen, X., Ji, Q., Wei, J., Tan, H., Jianxin, Y., Zheng, P., Laude, V., Kadic, M.: Light-weight shell-lattice metamaterials for mechanical shock absorption. Int. J. Mech. Sci. 169, 105288 (2020)

    Article  Google Scholar 

  2. Jianxing, H., Yu, T.X., Yin, S., Jun, X.: Low-speed impact mitigation of recoverable DNA-inspired double helical metamaterials. Int. J. Mech. Sci. 161–162, 105050 (2019)

    Google Scholar 

  3. Zhong, R., Minghui, F., Chen, X., Zheng, B., Lingling, H.: A novel three-dimensional mechanical metamaterial with compression-torsion properties. Compos. Struct. 226, 111232 (2019)

    Article  Google Scholar 

  4. Tan, X., Wang, B., Yao, K., Zhu, S., Chen, S., Peifei, X., Wang, L., Sun, Y.: Novel multi-stable mechanical metamaterials for trapping energy through shear deformation. Int. J. Mech. Sci. 164, 105168 (2019)

    Article  Google Scholar 

  5. Oyelade, A.O., Sadiq, O.M., Ogundalu, O.A., Ojoko, N.K.: On the dynamic properties of metamaterials in civil engineering structures. IOP Conf. Ser. Mater. Sci. Eng. 640, 012045 (2019)

    Article  Google Scholar 

  6. Wu, L., Geng, Q., Li, Y.: A locally resonant elastic metamaterial based on coupled vibration of internal liquid and coating layer. J. Sound Vibr. 468, 115102 (2020)

    Article  Google Scholar 

  7. Xianchen, X., Barnhart, M.V., Fang, X., Wen, J., Chen, Y., Huang, G.: A nonlinear dissipative elastic metamaterial for broadband wave mitigation. Int. J. Mech. Sci. 164, 105159 (2019)

    Article  Google Scholar 

  8. Zhen, L., Zhang, H., Yueming, L., Lee, H.P.: Dual-functional metamaterial with vibration isolation and heat flux guiding. J. Sound Vibr. 469, 115122 (2020)

    Article  Google Scholar 

  9. Lingling, W., Wang, Y., Zhai, Z., Yang, Y., Krishnaraju, D., Junqiang, L., Fugen, W., Wang, Q., Jiang, H.: Mechanical metamaterials for full-band mechanical wave shielding. Appl. Mater. Today 20, 100671 (2020)

    Article  Google Scholar 

  10. Kumar, S., Xiang, B., Lee, H.P.: Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation. Appl. Acoustics 159, 107088 (2020)

    Article  Google Scholar 

  11. Liao, Y., Zhou, X., Chen, Y., Huang, G.: Adaptive metamaterials for broadband sound absorption at low frequencies. Smart Mater. Struct. 28, 025005 (2019)

    Article  Google Scholar 

  12. Wang, X., Luo, U., Zhao, H., Huang, Z.: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials. App. Phys. Lett. 112, 021901 (2018)

    Article  Google Scholar 

  13. Li, D., Gao, Ruicong, D., Liang, L., Wing-Kai, Z.F.: A novel 3D re-entrant unit cell structure with negative Poisson’s ratio and tunable stiffness. Smart Mater. Struct. 29, 045015 (2020)

  14. Ren, C., Yang, D., Quin, H.: Mechanical performance of multidirectional buckling-based negative stiffness metamaterials: an analytical and numerical study. Materials 11, 1078 (2018)

  15. Tan, X., Wang, B., Zhu, S., Chen, S., Yao, K., Peifei, X., Linzhi, W., Sun, Y.: Novel multidirectional negative stiffness mechanical metamaterials. Smart Mater. Struct. 29, 015037 (2019)

    Article  Google Scholar 

  16. Zhakatayev, A., Kappasov, Z., Varol, H.A.: Analytical modeling and design of negative stiffness honeycombs. Smart Mater. Struct. 29, 045024 (2020)

    Article  Google Scholar 

  17. Jaberzadeh, M., Li, B., Tan, K.T.: Wave propagation in an elastic metamaterial with anisotropic effective mass density. Wave Motion 89, 131–141 (2019)

    Article  MathSciNet  Google Scholar 

  18. Shaat, M., El Dhaba, A.R.: On the equivalent shear modulus of composite metamaterials. Compos. Part B Eng. 172, 506–515 (2019)

    Article  Google Scholar 

  19. Wang, W., Bonello, B., Djafari-Rouhani, A., Pennec, Y., Zhao, J.: Elastic stubbed metamaterial plate with torsional resonances. Ultrasonics 106, 106142 (2020)

    Article  Google Scholar 

  20. Dudek, K.K., Gatt, R., Grima, J.N.: 3D composite metamaterial with magnetic inclusions exhibiting negative stiffness and auxetic behaviour. Mater. Des. 187, 108403 (2020)

    Article  Google Scholar 

  21. Li, Z., Wang, C., Wang, X.: Modelling of elastic metamaterials with negative mass and modulus based on translational resonance. Int. J. Solids Struct. 162, 271–284 (2019)

    Article  Google Scholar 

  22. Li, Z., Huan, H., Wang, X.: A new two-dimensional elastic metamaterial system with multiple local resonances. Int. J. Mech. Sci. 149, 273–284 (2018)

    Article  Google Scholar 

  23. Li, Z., Wang, X.: On the dynamic behaviour of a two-dimensional elastic metamaterial system. Int. J. Solids Struct. 78–79, 174–181 (2016)

  24. Pernas-Salomón, R., Shmuel, G.: Symmetry breaking creates electro-momentum coupling in piezoelectric metamaterials. J. Mech. Phys. Solids 134, 103770 (2020)

    Article  MathSciNet  Google Scholar 

  25. Yang, H., Abali, B.E., Timofeev, D., Muller, W.H.: Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis. Contin. Mech. Thermodyn. 32, 1251–1270 (2019)

    Article  MathSciNet  Google Scholar 

  26. Eugster, S.R., Dell’Isola, F., Steigmann, D.J.: Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math. Mech. Complex Syst. 7, 75–98 (2019)

  27. Porubov, A.V., Grekova, E.F.: On nonlinear modeling of an acoustic metamaterial. Mech. Res. Commun. 103, 103464 (2020)

    Article  Google Scholar 

  28. Chen, Y., Frenzel, T., Guenneau, S., Kadic, M., Wegener, M.: Mapping acoustical activity in 3D chiral mechanical metamaterials onto micropolar continuum elasticity. J. Mech. Phys. Solids 137, 103877 (2020)

    Article  MathSciNet  Google Scholar 

  29. Schiavone, A., Li, Z., Wang, X.: Modeling and analysis of the transient behaviour of an elastic metamaterial as a generalized cosserat continuum. J. Appl. Mech. 88(9), 091003 (2021)

    Article  Google Scholar 

  30. Wang, Y.-F., Wang, Y.-S., Zhang, C.: Two-dimensionally locally resonant elastic metamaterials with chiral comb-like interlayers: bandgap and simultaneously double negative properties. J. Acoust. Soc. Am. 139, 3311 (2016)

    Article  Google Scholar 

  31. Liu, X., Gengkai, H.: Elastic metamaterials making use of chirality: a review. Stronjiski vestnik - J. Mech. Eng. 62, 403–418 (2016)

    Article  Google Scholar 

  32. Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51(7–8), 1534–1541 (2014)

    Article  Google Scholar 

Download references

Funding

This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest or competing interests to report.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors give their consent for publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiavone, A., Wang, X. Continuous modelling of a class of periodic elastic metamaterials with local rotation. Z. Angew. Math. Phys. 73, 29 (2022). https://doi.org/10.1007/s00033-021-01656-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01656-x

Keywords

Mathematics Subject Classification

Navigation