Skip to main content
Log in

Fluid interaction does not affect the critical exponent in a three-dimensional Keller–Segel–Stokes model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The coupled chemotaxis fluid system

$$\begin{aligned} \left\{ \begin{array}{llc} n_t=\nabla \cdot ( (n+1)^{m-1}\nabla n)-\nabla \cdot (n(n+1)^{m-\alpha -1} \nabla c)-u\cdot \nabla n, &{}(x,t)\in \Omega \times (0,T),\\ \displaystyle c_t=\Delta c-c+n-u\cdot \nabla c, &{}(x,t)\in \Omega \times (0,T),\\ \displaystyle u_t=\Delta u+\nabla P+n\nabla \phi ,\quad \nabla \cdot u=0, &{}(x,t)\in \Omega \times (0,T),\\ \displaystyle \nabla c\cdot \nu =\nabla n\cdot \nu =0, \;\; u=0,&{}(x,t)\in \partial \Omega \times (0,T),\\ n(x,0)=n_{0}(x),\quad c(x,0)=c_{0}(x),\quad u(x,0)=u_0(x) &{} x\in \Omega , \end{array} \right. \end{aligned}$$

is considered in a bounded domain \(\Omega \subset \mathbb {R}^3\), with smooth boundary, where \(m,\alpha \in \mathbb {R}\). It is known that in the fluid-free case (\(u\equiv 0\)), the system admits a global bounded solution if \(\alpha >\frac{1}{3}\). The purpose of this paper is to overcome difficulties arising from the presence of fluid interaction and to show that the same conclusion holds if \(m>-\frac{1}{3}\). In the case \(m\le -\frac{1}{3}\) and \(\alpha >\frac{1}{3}\), global existence of classical solution will be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(09), 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35, 1891–1904 (2015)

    Article  MathSciNet  Google Scholar 

  3. Cao, X.: Boundedness in a three-dimensional chemotaxis–haptotaxis model. Z. Angew. Math. Phys. 67(1), 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cao, X.: An interpolation inequality and its application in Keller–Segel model. arXiv preprint arXiv:1707.09235, (2017)

  5. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252(10), 5832–5851 (2012)

    Article  MathSciNet  Google Scholar 

  6. Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129(1), 135–146 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258(6), 2080–2113 (2015)

    Article  MathSciNet  Google Scholar 

  8. Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21(5), 1057–1076 (2008)

    Article  MathSciNet  Google Scholar 

  9. Freitag, M.: Blow-up profiles and refined extensibility criteria in quasilinear Keller-Segel systems. J. Math. Anal. Appl. 463(2), 964–988 (2018)

    Article  MathSciNet  Google Scholar 

  10. Giga, Yoshikazu, Sohr, Hermann: Abstract \(L^p\) estimates for the cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102(1), 72–94 (1991)

    Article  MathSciNet  Google Scholar 

  11. Herrero, M.A., Velázquez, J.J.L.: Chemotactic collapse for the Keller–Segel model. J. Math. Biol. 35(2), 177–194 (1996)

    Article  MathSciNet  Google Scholar 

  12. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1–2), 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  13. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Herrero, M .A., Velázquez, J .J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci 24(4), 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Horstmann, D., Winkler, M.: Boundedness versus blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107 (2005)

    Article  Google Scholar 

  16. Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. J. Differ. Equ. 252(2), 1421–1440 (2012)

    Article  MathSciNet  Google Scholar 

  17. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  18. Lorz, A.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20(6), 987–1004 (2010)

    Article  MathSciNet  Google Scholar 

  19. Mizoguchi, N., Winkler, M.: Finite-time blow-up in the two-dimensional Keller–Segel system. preprint, (2013)

  20. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40(3), 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Peng, Y., Xiang, Z.: Global existence and boundedness in a 3d Keller–Segel–Stokes system with nonlinear diffusion and rotational flux. Z. Angew. Math. Phys. 68(3), 68 (2017)

    Article  MathSciNet  Google Scholar 

  22. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252(1), 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  23. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(1), 157–178 (2013)

    Article  MathSciNet  Google Scholar 

  24. Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with subcritical sensitivity. Math. Models Methods Appl. Sci. 27, 2745–2780 (2017)

    Article  MathSciNet  Google Scholar 

  25. Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier–Stokes system with subcritical sensitivity. Ann. Sc. Norm. Super. Pisa-Cl. Sci. 10(2422), 2036–2145 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259(12), 7578–7609 (2015)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3d case. J. Differ. Equ. 261(9), 4944–4973 (2016)

    Article  MathSciNet  Google Scholar 

  28. Winkler, M.: Aggregation versus global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    Article  Google Scholar 

  29. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37(2), 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  30. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100(5), 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  31. Winkler, M.: Does fluid interaction affect regularity in the three-dimensional Keller–Segel system with saturated sensitivity? J. Math. Fluid Mech. 20(4), 1889–1909 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is supported by National Natural Science Foundation of China (No. 11901081) and the Fundamental Research Funds for the Central Universities (No. 19D110909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinru Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X. Fluid interaction does not affect the critical exponent in a three-dimensional Keller–Segel–Stokes model. Z. Angew. Math. Phys. 71, 61 (2020). https://doi.org/10.1007/s00033-020-1285-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1285-x

Keywords

Mathematics Subject Classification

Navigation