Skip to main content
Log in

Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy–Littlewood–Sobolev critical exponent

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the following magnetic nonlinear Choquard equation

$$\begin{aligned} -(\nabla +iA(x))^2u+ V(x)u = \left( \frac{1}{|x|^{\alpha }}*|u|^{2_{\alpha }^*}\right) |u|^{2_{\alpha }^*-2} u + \lambda f(u)\ \text { in }\ \mathbb {R}^N, \end{aligned}$$

where \(2_{\alpha }^{*}=\frac{2N-\alpha }{N-2}\) is the critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality, \(\lambda >0\), \(N\ge 3\), \(0<\alpha < N\), \(A: \mathbb {R}^{N}\rightarrow \mathbb {R}^{N}\) is an \(C^1\), \(\mathbb {Z}^N\)-periodic vector potential and V is a continuous scalar potential given as a perturbation of a periodic potential. Considering different types of nonlinearities f, namely \(f(x,u)=\left( \frac{1}{|x|^{\alpha }}*|u|^{p}\right) |u|^{p-2} u\) for \((2N-\alpha )/N<p<2^{*}_{\alpha }\), then \(f(u)=|u|^{p-1} u\) for \(1<p<2^*-1\) and \(f(u)=|u|^{2^* - 2}u\) (where \(2^*=2N/(N-2)\)), we prove the existence of at least one ground-state solution for this equation by variational methods if p belongs to some intervals depending on N and \(\lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Carrião, P.C., Miyagaki, O.H.: Nonlinear perturbations of a periodic elliptic problem with critical growth. J. Math. Anal. Appl. 260(1), 133–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Figueiredo, G.M.: Nonlinear perturbations of a periodic Kirchhoff equation in \({\mathbb{R}}^N\). Nonlinear Anal. 75(5), 2750–2759 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., Figueiredo, G.M., Yang, M.: Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field. Asymptot. Anal. 96(2), 135–159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., Gao, F., Squassina, M., Yang, M.: Singularly perturbed critical Choquard equations. J. Differ. Equ. 263(7), 3943–3988 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alves, C.O., Nobrega, A., Yang, M.: Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differ. Equ. 55(3), 48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alves, C.O., Yang, M.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257(11), 4133–4164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alves, C.O., Yang, M.: Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method. Proc. R. Soc. Edinburgh Sect. A 146(1), 23–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosio, V., D’Avenia, P.: Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity. J. Differ. Equ. 264(5), 3336–3368 (2018)

    Article  MATH  Google Scholar 

  9. Ambrosio, V.: Multiplicity and concentration results for fractional Schr ödinger–Poisson equations with magnetic fields and critical growth. Potential Anal. 52, 565–600 (2020). https://doi.org/10.1007/s11118-018-9751-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Ambrosio, V.: Concentration phenomena for a fractional Choquard equation with magnetic field. Dyn. Partial Differ. Equ. 16(2), 125–149 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ambrosio, V.: Multiplicity and concentration of solutions for a fractional Kirchhoff equation with magnetic field and critical growth. Ann. Henri Poincaré 20(8), 2717–2766 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ambrosio, V.: Multiplicity and concentration results for fractional Schrödinger-Poisson type equation with magnetic field. Proc. R. Soc. Edinb. Sect. A 150(2), 655–694 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arioli, G., Szulkin, A.: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170(4), 277–295 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bueno, H., Mamami, G.G., Pereira, G.A.: Ground state of a magnetic nonlinear Choquard equation. Nonlinear Anal. 181, 189–199 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63(2), 233–248 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coti Zelati, V., Rabinowtiz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \({\mathbb{R}}^N\). Comm. Pure Appl. Math. 45(10), 1217–1269 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. d’Avenia, P., Ji, C.: Multiplicity and concentration results for a magnetic Schrödinger equation with exponential critical growth in \({\mathbb{R}}^2\), arXiv:1906.10937

  19. d’Avenia, P., Squassina, M.: Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 24(1), 1–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, L., Yang, M.: Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin. Dyn. Syst. 39(10), 5847–5866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Drábek, P., Milota, J.: Methods of Nonlinear Analysis. Applications to Diferential Equations, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Verlag, Basel, (2007)

  22. Du, L., Gao, F., Yang, M.: Existence and qualitative analysis for nonlinear weighted Choquard equations, arXiv:1810.11759v1

  23. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142(6), 1237–1262 (2012)

    Article  MATH  Google Scholar 

  24. Fiscella, A., Pinamonti, A., Vecchi, E.: Multiplicity results for magnetic fractional problems. J. Differ. Equ. 263(8), 4617–4633 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, F., Yang, M.: On nonlocal Choquard equations with Hardy–Littlewood–Sobolev critical exponents. J. Math. Anal. Appl. 448(2), 1006–1041 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, F., Yang, M.: The Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci. China Math. 61(7), 1219–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, F., Yang, M.: A strongly indefinite Choquard equation with critical exponent due to the Hardy–Littlewood–Sobolev inequality. Commun. Contemp. Math. 20(4), 1750037 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kavian, O.: Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Springer, Berlin, ISBN 2-287-00410-6 (1993)

  29. Lieb, E.H., Loss, M.: Analysis, 2nd. edition, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, ISBN: 0-8218-2783-9 (2001)

  30. Miyagaki, O.H.: On a class of semilinear elliptic problem in \({\mathbb{R}}^N\) with critical growth. Nonlinear Anal. 29(7), 773–781 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent. Commun. Contemp. Math. 17(5), 1550005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equation. Calc. Var. Partial Differ. Equ. 52(1–2), 199–235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed point theory appl. 19(1), 773–813 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mukherjee, T., Sreenadh, K.: On concentration of least energy solutions for magnetic critical Choquard equations. J. Math. Anal. Appl. 464(1), 402–420 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, Z., Gao, F., Yang, M.: Multiple solutions for nonhomogeneous Choquard equation involving Hardy–Littlewood–Sobolev critical exponent. Z. Angew. Math. Phys. 68(3), 61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston Inc, Boston, ISBN 0-8176-3913-6 (1996)

Download references

Acknowledgements

The authors thank Prof. G. M. Figueiredo for many useful conversations and suggestions and also a anonymous referee who helped a lot to clarify the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bueno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Bueno takes part in the project 422806/2018-8 by CNPq/Brazil.

L. Vieira received research grants from PCRH/FAPEMIG/Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, H., Lisboa, N.d.H. & Vieira, L.L. Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy–Littlewood–Sobolev critical exponent. Z. Angew. Math. Phys. 71, 143 (2020). https://doi.org/10.1007/s00033-020-01370-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01370-0

Keywords

Mathematics Subject Classification

Navigation