Skip to main content
Log in

New critical exponents, large time behavior, and life span for a fast diffusive p-Laplacian equation with nonlocal source

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper mainly investigate positive solutions of the Cauchy problem for a fast diffusive p-Laplacian equation with nonlocal source

$$\begin{aligned} u_{t}=\Delta _pu+\left( \,\,\int \limits _{{\mathbb {R}}^N}u^q(y,t)\mathrm{d}y\right) ^{\frac{r-1}{q}}u^{s+1},\quad (x,t)\in {\mathbb {R}}^N\times (0,T), \end{aligned}$$

where \(N\ge 1\), \(\frac{2N}{N+1}<p<2\), \(q>1\), \(r\ge 1\), \(0\le s<\left( 1+\frac{1}{N}\right) p-2\) and \(r+s>1\). We obtain the new critical Fujita exponent by virtue of the auxiliary function method and forward self-similar solution, and then determine the second critical exponent to classify global and non-global solutions of the problem in the coexistence region via the decay rates of an initial data at spatial infinity. Moreover, the large time behavior of global solution and the life span of non-global solution are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice Hall, Upper Saddle River (1964)

    MATH  Google Scholar 

  2. Dibenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)

    Book  Google Scholar 

  3. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Springer, New York (1992)

    MATH  Google Scholar 

  4. Furter, J., Grinfield, M.: Local vs. non-local interactions in population dynamics. J. Math. Biol. 27, 65–80 (1989)

    Article  MathSciNet  Google Scholar 

  5. Vázquez, J.L.: The porous medium equation: mathematical theory. Mesoscopic Phys Nanotechnol. 284. Article ID479002 (2007)

  6. Fujita, H.: On the blowing up of solution of the Cauchy problem for \(u_t=\Delta u+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. I(13), 109–124 (1966)

    Google Scholar 

  7. Hayakawa, K.: On nonexistence of global solutions of some semilinear parabolic equation. Proc. Jpn. Acad. 49, 503–505 (1973)

    Article  MathSciNet  Google Scholar 

  8. Weissler, F.B.: Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38, 29–40 (1981)

    Article  MathSciNet  Google Scholar 

  9. Galaktionov, V.A.: Conditions for nonexistence as a whole and localization of the solutions of Cauchy’s problem for a class of nonlinear parabolic equations. Zh. Vychisl. Mat. Mat. Fiz. 23, 1341–1354 (1985)

    Google Scholar 

  10. Qi, Y.W.: Critical exponents of degenerate parabolic equations. Sci. China Ser. A 38, 1153–1162 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Qi, Y.W., Wang, M.X.: Critical exponents of quasilinear parabolic equations. J. Math. Anal. Appl. 267, 264–280 (2002)

    Article  MathSciNet  Google Scholar 

  12. Galaktionov, V.A., Levine, H.A.: A general approach to critical Fujita exponents in nonlinear parabolic problems. Nonlinear Anal. 34, 1005–1027 (1998)

    Article  MathSciNet  Google Scholar 

  13. Afanas’eva, N.V., Tedeev, A.F.: Theorems on the existence and nonexistence of solutions of the Cauchy problem for degenerate parabolic equations with nonlocal source. Ukr. Math. J. 57, 1687–1711 (2005)

    Article  MathSciNet  Google Scholar 

  14. Lee, T.Y., Ni, W.M.: Global existence, large time behavior and life span on solution of a semilinear parabolic Cauchy problem. Trans. Am. Math. Soc. 333, 365–378 (1992)

    Article  MathSciNet  Google Scholar 

  15. Mu, C.L., Li, Y.H., Wang, Y.: Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values. Nonlinear Anal. Real World Appl. 11, 198–206 (2010)

    Article  MathSciNet  Google Scholar 

  16. Yang, J.G., Yang, C.X., Zheng, S.N.: Second critical exponent for evolution p-Laplacian equation with weighted source. Math. Comput. Modell. 56, 247–256 (2012)

    Article  MathSciNet  Google Scholar 

  17. Yang, C.X., Ji, F.Y., Zhou, S.S.: The second critical exponent for a semilinear nonlocal parabolic equation. J. Math. Anal. Appl. 418, 231–237 (2014)

    Article  MathSciNet  Google Scholar 

  18. Ma, L.W., Fang, Z.B.: A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources. Commun. Pure Appl. Anal. 16, 1697–1706 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ma, L.W., Fang, Z.B.: Secondary critical exponent and life span for a nonlocal parabolic p-Laplace equation. Appl. Anal. 97, 775–786 (2018)

    Article  MathSciNet  Google Scholar 

  20. Zhao, J.N.: The asymptotic behavior of solutions of a quasilinear degenerate parabolic equation. J. Differ. Equ. 102, 33–52 (1993)

    Article  Google Scholar 

  21. Zhao, J.N.: The Cauchy problem for \(u_t={\rm div}(|\nabla u|^{p-2}\nabla u)\) when \(\frac{2n}{n+1}<p<2\). Nonlinear Anal. TMA. 24, 615–630 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply thank all the reviewers for their insightful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Bo Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Natural Science Foundation of Shandong Province of China (No. ZR2019MA072) and the Fundamental Research Funds for the Central Universities (No. 201964008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Fang, Z.B. New critical exponents, large time behavior, and life span for a fast diffusive p-Laplacian equation with nonlocal source. Z. Angew. Math. Phys. 70, 144 (2019). https://doi.org/10.1007/s00033-019-1191-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1191-2

Keywords

Mathematics Subject Classification

Navigation