Skip to main content
Log in

Nonrelativistic limits for the 1D relativistic Euler equations with physical vacuum

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We prove the nonrelativistic limits of the local smooth solutions to the free boundary value problem of the 1D relativistic Euler equations, when the mass energy density includes the vacuum states at the free boundary. We successfully overcome the strong nonlinearity and the degenerate difficulty of the relativistic Euler equations caused by the Lorentz factor and the vacuum occurring on the moving boundary, respectively. Moreover, the smooth solutions of the relativistic Euler equations converge to the solutions of the classical compressible Euler equation, at the rate of \(\frac{1}{c^2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvo, D., Colombo, R.M., Frid, H.: \(L^{1}\) stability of spatially periodic solutions in relativistic gas dynamics. Commun. Math. Phys. 284(2), 509–535 (2008)

    Article  Google Scholar 

  2. Chandrasekhar, S.: The post-Newtonian equations of hydrodynamics in general relativity. Astrophys. J. 142, 1488–1512 (1965)

    Article  MathSciNet  Google Scholar 

  3. Chandrasekhar, S.: Post-Newtonian equations of hydrodynamics and the stability of gaseous masses in general relativity. Phys. Rev. Lett. 14, 241–244 (1965)

    Article  MathSciNet  Google Scholar 

  4. Chen, G.Q., Li, Y.C.: Stability of Riemann solutions with large oscillation for the relativistic Euler equations. J. Differ. Equ. 201, 1–24 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chen, G.Q., Li, Y.C.: Relativistic Euler equations for the isentropic fluids: stability of Riemann solutions with large oscillation. Z. Angew. Math. Phys. 55, 903–926 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chen, J.: Conservation laws for the relativistic p-system. Commun. Partial Differ. Equ. 20, 1605–1646 (1995)

    Article  MathSciNet  Google Scholar 

  7. Chen, J.: Conservation laws for the relativistic fluid dynamics. Arch. Rational Mech. Anal. 139, 377–398 (1997)

    Article  MathSciNet  Google Scholar 

  8. Coutand, D., Lindblad, H., Shkoller, S.: A priori estimates for the free-boundary 3D compressible Euler equations in physical vacuum. Commun. Math. Phys. 296(2), 559–587 (2010)

    Article  MathSciNet  Google Scholar 

  9. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math. 64(3), 328–366 (2011)

    Article  MathSciNet  Google Scholar 

  10. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Rational Mech. Anal. 206, 515–616 (2012)

    Article  MathSciNet  Google Scholar 

  11. Gu, X.M., Lei, Z.: Well-posedness of 1-D compressible Euler–Poisson equations with physical vacuum. J. Differ. Equ. 252(3), 2160–2188 (2012)

    Article  MathSciNet  Google Scholar 

  12. Hadzic, M., Shkoller, S., Speck, J.: A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary (2015). arXiv:1511.07467

  13. Hsu, C.H., Lin, S.S., Makino, T.: On the relativistic Euler equation. Methods Appl. Anal. 8, 159–208 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Hsu, C.H., Lin, S.-S., Makino, T.: On spherically symmetric solutions of the relativistic Euer equation. J. Differ. Equ. 201, 1–24 (2004)

    Article  Google Scholar 

  15. Jang, J., Lefloch, P.G., Masmoudi, N.: Lagrangian formulation and a priori estimates for relativistic fluid flows with vacuum. J. Differ. Equ. 260(6), 5481–5509 (2016)

    Article  MathSciNet  Google Scholar 

  16. Jang, J., Masmoudi, N.: Well-posedness for compressible Euler equations with physical vacuum singularity. Commun. Pure Appl. Math. 62(10), 1327–1385 (2009)

    Article  MathSciNet  Google Scholar 

  17. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical vacuum. Commun. Pure Appl. Math. 68(1), 61–111 (2015)

    Article  MathSciNet  Google Scholar 

  18. Mai, La-Su., Li, H.L., Marcati, P.: Non-relativistic limit analysis of the Chandrasekhar–Thorne relativistic Euler equations with physical vacuum. Math. Models Methods Appl. Sci. (2019)

  19. Luo, T., Xin, Z.P., Zeng, H.H.: Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation. Arch. Ration. Mech. Anal. 213(3), 763–831 (2014)

    Article  MathSciNet  Google Scholar 

  20. Geng, Y.C., Li, Y.C.: Non-relativistic global limits of entropy solutions to the extremely relativistic Euler equations. Z. Angew. Math. Phys. 61, 201–220 (2010)

    Article  MathSciNet  Google Scholar 

  21. Geng, Y.C., Li, Y.C.: Special relativistic effects revealed in the Riemann problem for three-dimensional relativistic Euler equations. Z. Angew. Math. Phys. 62(2), 281–304 (2011)

    Article  MathSciNet  Google Scholar 

  22. Jang, J.: Nonlinear instability in gravitational Euler–Poisson systems for “\(\gamma =6/5\)”. Arch. Ration. Mech. Anal. 188(2), 265–307 (2008)

    Article  MathSciNet  Google Scholar 

  23. Liang, E.P.T.: Relativistic simple waves: shock damping and entropy production. Astrophys. J. 211, 361–376 (1977)

    Article  Google Scholar 

  24. Li, Y.C., Feng, D., Wang, Z.: Global entropy solutions to the relativistic Euler equations for a class of large initial data. Z. Angew. Math. Phys. 56, 239–253 (2005)

    Article  MathSciNet  Google Scholar 

  25. Li, Y.C., Geng, Y.C.: Non-relativistic global limits of entropy solutions to the isentropic relativistic Euler equations. Z. Angew. Math. Phys. 57, 960–983 (2006)

    Article  MathSciNet  Google Scholar 

  26. Min, L., Ukai, S.: Non-relativistic global limits of weak solutions of the relativistic Euler equations. J. Math. Kyoto Univ. 38, 525–537 (1998)

    Article  MathSciNet  Google Scholar 

  27. Makino, T., Ukai, S.: Local smooth solutions of the relativistic Euler equation. J. Math. Kyoto Univ. 35, 105–114 (1995)

    Article  MathSciNet  Google Scholar 

  28. Novikov, I.D., Thorne, K.S.: Astrophysics of Black Holes. In: DeWitt, C., DeWitt, B. (eds.) Black Holes, pp. 343–450. Gordon and Breach, Paris (1973)

    Google Scholar 

  29. Makino, T., Ukai, S.: Local smooth solutions of the relativistic Euler equation II. J. Kodai Math. 18, 365–375 (1995)

    Article  MathSciNet  Google Scholar 

  30. Pan, R.H., Smoller, J.: Blow-up of smooth solutions for relativistic Euler equations. Commun. Math. Phys. 262, 729–755 (2006)

    Article  Google Scholar 

  31. Pant, V.: Global entropy solutions for isentropic relativistic fluid dynamics. Commun. Partial Differ. Equ. 21, 1609–1641 (1996)

    Article  MathSciNet  Google Scholar 

  32. Pant, V.: On I. symmetry breaking under perturbations and II. Relativistic fluid dynamics, Ph. D. Thesis, University of Michigan (1996)

  33. Smoller, J., Temple, B.: Global solutions of the relativistic Euler equations. Commun. Math. Phys. 156, 67–99 (1993)

    Article  MathSciNet  Google Scholar 

  34. Taub, A.H.: Approximate solutions of the Einstein equations for isentropic motions of plane symmetric distributions of perfect fluids. Phys. Rev. 107, 884–900 (1957)

    Article  MathSciNet  Google Scholar 

  35. Thorne, K.S.: The general-relativistic theory of stellar structure and dynamics. In: Gratton, L. (ed.) Proceedings of the International School of Physics “Enrico Fermi,” Course XXXV, at Varenna, Italy, July 12–24, 1965, pp. 166–280. Academic Press, New York (1966)

Download references

Acknowledgements

Our work is partially supported by the National Natural Science Foundation of China (Nos. 11601246, 11971014) and the Program of Higher Level talents of Inner Mongolia University (No. 21100-5165105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to La-Su Mai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, LS., Cao, X. Nonrelativistic limits for the 1D relativistic Euler equations with physical vacuum. Z. Angew. Math. Phys. 70, 145 (2019). https://doi.org/10.1007/s00033-019-1189-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1189-9

Keywords

Mathematics Subject Classification

Navigation