Skip to main content
Log in

Well-Posedness for the Motion of Physical Vacuum of the Three-dimensional Compressible Euler Equations with or without Self-Gravitation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper concerns the well-posedness theory of the motion of a physical vacuum for the compressible Euler equations with or without self-gravitation. First, a general uniqueness theorem of classical solutions is proved for the three dimensional general motion. Second, for the spherically symmetric motions, without imposing the compatibility condition of the first derivative being zero at the center of symmetry, a new local-in-time existence theory is established in a functional space involving less derivatives than those constructed for three-dimensional motions in (Coutand et al., Commun Math Phys 296:559–587, 2010; Coutand and Shkoller, Arch Ration Mech Anal 206:515–616, 2012; Jang and Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, 2008) by constructing suitable weights and cutoff functions featuring the behavior of solutions near both the center of the symmetry and the moving vacuum boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auchmuty G., Beals R.: Variational solutions of some nonlinear free boundary problems. Arch. Ration. Mech. Anal. 43, 255–271 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrose D., Masmoudi N.: The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 58, 479–521 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chandrasekhar S.: Introduction to the Stellar Structure. University of Chicago Press, Chicago (1939)

    Google Scholar 

  4. Christodoulou D., Lindblad H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coutand D., Lindblad H., Shkoller S.: A priori estimates for the free-boundary 3-D compressible Euler equations in physical vacuum. Commun. Math. Phys. 296, 559–587 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20, 829–930 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coutand D., Shkoller S.: Well-posedness in smooth function spaces for the moving- boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure Appl. Math. 64, 328–366 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coutand D., Shkoller S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cox J.P., Giuli R.T.: Principles of Stellar Structure, I, II. Gordon and Breach, New York (1968)

    Google Scholar 

  10. Dafermos C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2005)

    MATH  Google Scholar 

  11. Deng Y., Liu T.P., Yang T., Yao Z.: Solutions of Euler–Poisson equations for gaseous stars. Arch. Ration. Mech. Anal. 164(3), 261–285 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. DiPerna R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28(1), 137–188 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gu X., Lei Z.: Well-posedness of 1-D compressible Euler–Poisson equations with physical vacuum. J. Differ. Equ. 252(3), 2160–2188 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Jang J.: Local well-posedness of dynamics of viscous gaseous stars. Arch. Ration. Mech. Anal. 195, 797–863 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jang J., Masmoudi N.: Well-posedness for compressible Euler with physical vacuum singularity. Commun. Pure Appl. Math. 62, 1327–1385 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jang, J., Masmoudi, N.: Well-posedness of compressible Euler equations in a physical vacuum (2008). arXiv:1005.4441

  17. Jang, J.: Nonlinear instability theory of Lane–Emden stars (2012). arXiv:1211.2463

  18. Kreiss H.O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–296 (1970)

    Article  MathSciNet  Google Scholar 

  19. Kufner A.: Weighted Sobolev Spaces. Wiley-Interscience, New York (1985)

    MATH  Google Scholar 

  20. Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality. Vydavatelsky Servis, Plzen, 2007 (about its history and some related results)

  21. Lannes D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18, 605–654 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lieb E.H., Yau H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Lin L.W.: On the vacuum state for the equations of isentropic gas dynamics. J. Math. Anal. Appl. 121, 406–425 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lindblad H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162, 109–194 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lindblad H.: Well posedness for the motion of a compressible liquid with free surface boundary. Commun. Math. Phys. 260, 319–392 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Liu T.-P.: Compressible flow with damping and vacuum. Jpn. J. Appl.Math. 13, 25–32 (1996)

    MATH  Google Scholar 

  27. Liu T.-P., Yang T.: Compressible Euler equations with vacuum. J. Differ. Equ. 140, 223–237 (1997)

    Article  ADS  MATH  Google Scholar 

  28. Liu T.-P., Yang T.: Compressible flow with vacuum and physical singularity. Methods Appl. Anal. 7, 495–310 (2000)

    MATH  MathSciNet  Google Scholar 

  29. Liu T.-P., Smoller J.: On the vacuum state for isentropic gas dynamics equations. Adv. Math. 1, 345–359 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  30. Luo T., Smoller J.: Nonlinear dynamical stability of Newtonian rotating and non-rotating white dwarfs and rotating supermassive stars. Commun. Math. Phys. 284(2), 425–457 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Luo T., Smoller J.: Existence and non-linear stability of rotating star solutions of the compressible Euler–Poisson equations. Arch. Ration. Mech. Anal. 191(3), 447–496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Makino, T.: On a Local Existence Theorem for the Evolution Equation of Gaseous Stars. Patterns and Waves. Stud. Math. Appl., Vol. 18. North-Holland, Amsterdam, pp. 459–479 (1986)

  33. Matusu-Necasova S., Okada M., Makino T.: Free boundary problem for the equation of spherically symmetric motion of viscous gas III. Jpn. J. Ind. Appl. Math. 14, 199–213 (1997)

    Article  MathSciNet  Google Scholar 

  34. Okada M., Makino T.: Free boundary problem for the equation of spherically symmetric motion of viscous gas. Jpn. J. Ind. Appl. Math. 10, 219–335 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rein G.: Non-linear stability of gaseous stars. Arch. Ration. Mech. Anal. 168(2): 115–130 (2003)

    Article  MathSciNet  Google Scholar 

  36. Shatah J., Zeng C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61, 698–744 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Trakhinin Y.: Local existence for the free boundary problem for the non-relativistic and relativistic compressible Euler equations with a vacuum boundary condition. Commun. Pure Appl. Math. 62, 1551–1594 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wu S.: Well-posedness in Sobolev spaces of the fullwaterwave problem in 2-D. Invent. Math. 130, 39–72 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12, 445–495 (1999)

    Article  MATH  Google Scholar 

  40. Xu C.-J., Yang T.: Local existence with physical vacuum boundary condition to Euler equations with damping. J. Differ. Equ. 210, 217–231 (2005)

    Article  ADS  MATH  Google Scholar 

  41. Yang T.: Singular behavior of vacuum states for compressible fluids. J. Comput. Appl. Math. 190, 211–231 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Zhang P., Zhang Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61, 877–940 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huihui Zeng.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, T., Xin, Z. & Zeng, H. Well-Posedness for the Motion of Physical Vacuum of the Three-dimensional Compressible Euler Equations with or without Self-Gravitation. Arch Rational Mech Anal 213, 763–831 (2014). https://doi.org/10.1007/s00205-014-0742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0742-0

Keywords

Navigation