Skip to main content
Log in

Optimal control for a class of mixed variational problems

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The present paper concerns a class of abstract mixed variational problems governed by a strongly monotone Lipschitz continuous operator. With the existence and uniqueness results in the literature for the problem under consideration, we prove a general convergence result, which shows the continuous dependence of the solution with respect to the data by using arguments of monotonicity, compactness, lower semicontinuity and Mosco convergence. Then we consider an associated optimal control problem for which we prove the existence of optimal pairs. The mathematical tools developed in this paper are useful in the analysis and control of a large class of boundary value problems which, in a weak formulation, lead to mixed variational problems. To provide an example, we illustrate our results in the study of a mathematical model which describes the equilibrium of an elastic body in frictional contact with a foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amassad, A., Chenais, D., Fabre, C.: Optimal control of an elastic contact problem involving Tresca friction law. Nonlinear Anal. 48, 1107–1135 (2002)

    Article  MathSciNet  Google Scholar 

  2. Amdouni, S., et al.: A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies. ESAIM M2AN Math. Model. Numer. Anal. 46, 813–839 (2012)

    Article  MathSciNet  Google Scholar 

  3. Barbu, V.: Optimal Control of Variational Inequalities. Pitman, Boston (1984)

    MATH  Google Scholar 

  4. Céa, J.: Optimization, Théorie et Algorithmes. Dunod, Paris (1971)

    MATH  Google Scholar 

  5. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  6. Freidman, A.: Optimal control for variational inequalities. SIAM J. Control Optim. 24, 439–451 (1986)

    Article  MathSciNet  Google Scholar 

  7. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  8. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, vol. 30. Americal Mathematical Society, Providence, RI-International Press, Somerville (2002)

    Book  Google Scholar 

  9. Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for unilateral problems in solid mechanics. In: Lions, J.L., Ciarlet, P.G. (eds.) Handbook of Numerical Analysis, vol. IV, pp. 313–485. North-Holland, Amsterdam (1996)

    MATH  Google Scholar 

  10. Hieu, D.V., Cho, Y.J., Xiao, Y.B.: Golden ratio algorithms with new stepsize rules for variational inequalities. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5703

    Article  Google Scholar 

  11. Hild, P., Renard, Y.: A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 115, 101–129 (2010)

    Article  MathSciNet  Google Scholar 

  12. Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanic. Springer, New York (1988)

    Book  Google Scholar 

  13. Hüeber, S., Wohlmuth, B.: An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43, 156–173 (2005)

    Article  MathSciNet  Google Scholar 

  14. Hüeber, S., Matei, A., Wohlmuth, B.: A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Sci. Math. Roum. 48, 209–232 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Hüeber, S., Matei, A., Wohlmuth, B.: Efficient algorithms for problems with friction. SIAM J. Sci. Comput. 29, 70–92 (2007)

    Article  MathSciNet  Google Scholar 

  16. Hu, R., et al.: Equivalence results of well-posedness for split variational-hemivariational inequalities. J. Nonlinear Convex Anal. 20(3), 447 (2019)

    MathSciNet  Google Scholar 

  17. Kurdila, A.J., Zabarankin, M.: Convex Functional Analysis. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  18. Li, W., et al.: Existence and stability for a generalized differential mixed quasi-variational inequality. Carpathian J. Math. 34, 347–354 (2018)

    MathSciNet  Google Scholar 

  19. Liu, Z.H., Zeng, B.: Optimal control of generalized quasi-variational hemivariational inequalities and its applications. Appl. Math. Optim. 72, 305–323 (2015)

    Article  MathSciNet  Google Scholar 

  20. Matei, A.: Weak solvability via Lagrange multipliers for two frictional contact models. Ann. Univ. Bucharest Math. Ser. 4(LXII), 179–191 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Matei, A., Ciurcea, R.: Contact problems for nonlinearly elastic materials: weak solvability involving dual Lagrange multipliers. ANZIAM J. 52, 160–178 (2010)

    Article  MathSciNet  Google Scholar 

  22. Matei, A., Micu, S.: Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal. 74, 1641–1652 (2011)

    Article  MathSciNet  Google Scholar 

  23. Matei, A., Micu, S.: Boundary optimal control for a frictional contact problem with normal compliance. Appl. Math. Optim. 78, 379–401 (2018)

    Article  MathSciNet  Google Scholar 

  24. Matei, A., Micu, S., Niţǎ, C.: Optimal control for antiplane frictional contact problems involving nonlinearly elastic materials of Hencky type. Math. Mech. Solids 23, 308–328 (2018)

    Article  MathSciNet  Google Scholar 

  25. Mignot, R.: Contrôle dans les inéquations variationnelles elliptiques. J. Func. Anal. 22, 130–185 (1976)

    Article  Google Scholar 

  26. Mignot, F., Puel, J.P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22, 466–476 (1984)

    Article  MathSciNet  Google Scholar 

  27. Migorski, S., Zeng, S.D.: Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model. Nonlinear Anal. Real World Appl. 43, 121–143 (2018)

    Article  MathSciNet  Google Scholar 

  28. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1968)

    Article  MathSciNet  Google Scholar 

  29. Neitaanmaki, P., Sprekels, J., Tiba, D.: Optimization of Elliptic Systems: Theory and Applications. Springer Monographs in Mathematics. Springer, New York (2006)

    Google Scholar 

  30. Reddy, B.D.: Mixed variational inequalities arising in elastoplasticity. Nonlinear Anal. 19, 1071–1089 (1992)

    Article  MathSciNet  Google Scholar 

  31. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)

    Book  Google Scholar 

  32. Shu, Q.Y., Hu, R., Xiao, Y.B.: Metric characterizations for well-posedness of split hemivariational inequalities. J. Inequal. Appl. 2018, 190 (2018). https://doi.org/10.1186/s13660-018-1761-4

    Article  MathSciNet  Google Scholar 

  33. Sofonea, M.: Convergence results and optimal control for a class of hemivariational inequalities. SIAM J. Math. Anal. 50, 4066–4086 (2018)

    Article  MathSciNet  Google Scholar 

  34. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series 398. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  35. Sofonea, M., Xiao, Y.B.: Fully history-dependent quasivariational inequalities in contact mechanics. Appl. Anal. 95, 2464–2484 (2016)

    Article  MathSciNet  Google Scholar 

  36. Sofonea, M., Xiao, Y.B.: Boundary optimal control of a nonsmooth frictionless contact problem. Comp. Math. Appl. 78, 152–165 (2019)

    Article  MathSciNet  Google Scholar 

  37. Sofonea, M., Xiao, Y.B.: Tykhonov well-posedness of elliptic variational-hemivariational inequalities. Electron. J. Differ. Equ. 2019(64), 1–19 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Sofonea, M., Xiao, Y.B.: Tykhonov well-posedness of split problems (submitted)

  39. Sofonea, M., Xiao, Y.B., Couderc, M.: Optimization problems for elastic contact models with unilateral constraints. Z. Angew. Math. Phys. 70, 1 (2019). https://doi.org/10.1007/s00033-018-1046-2

    Article  MathSciNet  MATH  Google Scholar 

  40. Sofonea, M., Xiao, Y.B., Couderc, M.: Optimization problems for a viscoelastic frictional contact problem with unilateral constraints. Nonlinear Anal. Real World Appl. 50, 86–103 (2019)

    Article  MathSciNet  Google Scholar 

  41. Sofonea, M., Xiao, Y.B., Zeng, S.D.: Generalized penalty method for history-dependent variational-hemivariational inequalities (submitted)

  42. Sofonea, M., Migórski, S.: Variational-Hemivariational Inequalities with Applications, Pure and Applied Mathematics. Chapman & Hall/CRC Press, Boca Raton/London (2018)

    MATH  Google Scholar 

  43. Wang, Y.M., et al.: Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems. J. Nonlinear Sci. Appl. 9, 1178–1192 (2016)

    Article  MathSciNet  Google Scholar 

  44. Tiba, D.: Lectures on the Optimal Control of Elliptic Equations, Lecture Notes, vol. 32. University of Jyväskylä, Jyväskylä (1995)

    Google Scholar 

  45. Tiba, D.: Optimal Control of Nonsmooth Distributed Parameter Systems. Springer, Berlin (1990)

    Book  Google Scholar 

  46. Xiao, Y.B., Sofonea, M.: Generalized penalty method for elliptic variational-hemivariational inequalities. Appl. Math. Optim. (2019). https://doi.org/10.1007/s00245-019-09563-4

    Article  Google Scholar 

  47. Xiao, Y.B., Sofonea, M.: On the optimal control of variational-hemivariational inequalities. J. Math. Anal. Appl. 475, 364–384 (2019)

    Article  MathSciNet  Google Scholar 

  48. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. II. Springer, Berlin (1990)

    Book  Google Scholar 

  49. Zeng, S.D., Migorski, S.: Noncoercive hyperbolic variational inequalities with applications to contact mechanics. J. Math. Anal. Appl. 455, 619–637 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research work was supported by the National Natural Science Foundation of China (11771067), the Applied Basic Project of Sichuan Province (2019YJ0204) and the Horizon 2020 Research and Innovation Framework Programme of the European Community under Grant Agreement CONMECH (823731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-bin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofonea, M., Matei, A. & Xiao, Yb. Optimal control for a class of mixed variational problems. Z. Angew. Math. Phys. 70, 127 (2019). https://doi.org/10.1007/s00033-019-1173-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1173-4

Keywords

2010 Mathematics Subject Classification

Navigation