Skip to main content
Log in

Mixed Methods for Optimal Control Problems

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2018

This article has been updated

Abstract

In this paper, we investigate a posteriori error estimates of amixed finite elementmethod for elliptic optimal control problems with an integral constraint. The gradient for ourmethod belongs to the square integrable space instead of the classical H(div; Ω) space. The state and co-state are approximated by the P 20 -P1 (velocity–pressure) pair and the control variable is approximated by piecewise constant functions. Using duality argument method and energy method, we derive the residual a posteriori error estimates for all variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 12 December 2018

    Page 268 (and Contents), the title should read as follows:

    A Posteriori Error Estimates of a Mixed Finite Element Method for Elliptic Optimal Control Problems with an Integral Constraint.

References

  1. Bonnans, J.F. and Casas, E., An Extension of Pontryagin’s Principle for State-Constrained Optimal Control of Semilinear Elliptic Equations and Variational Inequalities, SIAM J. Contr. Optim., 1995, vol. 33, pp. 274–298.

    Article  MathSciNet  MATH  Google Scholar 

  2. Brunner, H. and Yan, N., Finite Element Methods for Optimal Control Problems Governed by Integral Equations and Integro-Differential Equations, Num. Math., 2005, vol. 101, pp. 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ciarlet, P.G., The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1978.

    MATH  Google Scholar 

  4. Chen, Y., Superconvergence of Mixed Finite Element Methods forOptimal Control Problems, Math. Comp., 2008, vol. 77, pp. 1269–1291.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Superconvergence of Quadratic Optimal Control Problems by Triangular Mixed Finite Element Methods, Int. J. Num. Meth. Eng., 2008, vol. 75, no. 8, pp. 881–898.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y. and Dai, Y., Superconvergence for Optimal Control Problems Governed by Semi-Linear Elliptic Equations, J. Sci. Comput., 2009, vol. 39, pp. 206–221.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Huang, Y., Liu, W.B., and Yan, N., Error Estimates and Superconvergence ofMixed Finite Element Methods for Convex Optimal Control Problems, J. Sci. Comput., 2010, vol. 42, no. 3, pp. 382–403.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, S.C. and Chen, H.R., New Mixed Element Schemes for a Second-Order Elliptic Problem, Math. Num. Sinica, 2010, vol. 32, no. 2, pp. 213–218.

    MathSciNet  MATH  Google Scholar 

  9. Gunzburger, M.D. and Hou, L.S., Finite-Dimensional Approximation of a Class of Constrained Nonlinear Optimal Control Problems, SIAM J. Contr. Optim., 1996, vol. 34, pp. 1001–1043.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ge, L., Liu, W.B., and Yang, D.P., Adaptive Finite Element Approximation for a ConstrainedOptimal Control Problem via Multi-Meshes, J. Sci. Comput., 2009, vol. 41, no. 2, pp. 238–255.

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, H., Fu, H., and Zhang, J., A Splitting Positive Definite Mixed Finite Element Method for Elliptic Optimal Control Problem, Appl.Math. Comp., 2013, vol. 219, pp. 11178–11190.

    Article  MathSciNet  MATH  Google Scholar 

  12. Grisvard, P., Elliptic Problems in Nonsmooth Domains, London: Pitman, 1985.

    MATH  Google Scholar 

  13. Gong, W. and Yan, N., Adaptive Finite Element Method for Elliptic Optimal Control Problems: Convergence and Optimality, Num. Math., 2017, vol. 135, no. 4, pp. 1121–1170.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hou, T. and Chen, Y., Mixed Discontinuous Galerkin Time-Stepping Method for Linear Parabolic Optimal Control Problems, J. Comput. Math., 2015, vol. 33, no. 2, pp. 158–178.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou, L. and Turner, J.C., Analysis and Finite Element Approximation of an Optimal Control Problem in Electrochemistry with Current Density Controls, Num. Math., 1995, vol. 71, pp. 289–315.

    Article  MathSciNet  MATH  Google Scholar 

  16. Knowles, G., Finite Element Approximation of Parabolic Time Optimal Control Problems, SIAM J. Contr. Optim., 1982, vol. 20, pp. 414–427.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kufner, A., John, O., and Fucik, S., Function Spaces, Leiden: Nordhoff, 1977.

    MATH  Google Scholar 

  18. Lions, J.L., Optimal Control of Systems Governed by Partial Differential Equations, Berlin: Springer-Verlag, 1971.

    Book  MATH  Google Scholar 

  19. Li, R., Liu, W.B., Ma, H., and Tang, T., Adaptive Finite Element Approximation of Elliptic Optimal Control Problems, SIAM J. Contr. Optim., 2002, vol. 41, pp. 1321–1349.

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, R., Liu, W.B., and Yan, N., A Posteriori Error Estimates of Recovery Type for Distributed Convex Optimal Control Problems, J. Sci. Comput., 2002, vol. 41, no. 5, pp. 1321–1349.

    Google Scholar 

  21. Liu, W., Ma, H., Tang, T., and Yan, N., A Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method forOptimal Control ProblemsGoverned by Parabolic Equations, SIAM J. Num. An., 2004, vol. 42, pp. 1032–1061.

    Article  MATH  Google Scholar 

  22. Liu, W. and Yan, N., A Posteriori Error Estimates for Convex Boundary Control Problems, SIAM J. Num. An., 2001, vol. 39, pp. 73–99.

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W. and Yan, N., A Posteriori Error Estimates for Control Problems Governed by Stokes Equations, SIAM J. Num. An., 2003, vol. 40, pp. 1850–1869.

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, W. and Yan, N., A Posteriori Error Estimates for Optimal Control Problems Governed by Parabolic Equations, Num. Math., 2003, vol. 93, pp. 497–521.

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyer, C. and Rösch, A., Superconvergence Properties of Optimal Control Problems, SIAM J. Contr. Optim., 2004, vol. 43, no. 3, pp. 970–985.

    Article  MathSciNet  MATH  Google Scholar 

  26. Meyer, C. and Rösch, A., L -Estimates for Approximated Optimal Control Problems, SIAM J. Contr. Optim., 2005, vol. 44, no. 5, pp. 1636–1649.

    Article  MathSciNet  MATH  Google Scholar 

  27. Meidner, D. and Vexler, B., A Priori Error Estimates for Space-Time Finite Element Discretization of ParabolicOptimal Control Problems. Part I: Problemswithout Control Constraints, SIAM J. Contr. Optim., 2008, vol. 47, no. 3, pp. 1150–1177.

    Article  MATH  Google Scholar 

  28. Meidner, D. and Vexler, B., A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems. Part II: Problems with Control Constraints, SIAM J. Contr. Optim., 2008, vol. 47, no. 3, pp. 1301–1329.

    Article  MATH  Google Scholar 

  29. McKnight, R.S. and Bosarge, W.E., The Ritz–Galerkin Procedure for Parabolic Control Problems, SIAM J. Contr. Optim., 1973, vol. 11, no. 3, pp. 510–542.

    Article  MathSciNet  MATH  Google Scholar 

  30. Scott, L.R. and Zhang, S., Finite Element Interpolation of Nonsmooth Functions Satisfying Boundary Conditions, Math. Comp., 1990, vol. 54, pp. 483–493.

    Article  MathSciNet  MATH  Google Scholar 

  31. Shi, F., Yu, J.P., and Li, K.T., A New Stabilized Mixed Finite-ElementMethod for PoissonEquation Based on Two Local Gauss Integrations for Linear Element Pair, Int. J. Comput.Math., 2011, vol. 88, pp. 2293–2305.

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, W., Ge, L., Yang, D., and Liu, W., Sharp a Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations, J. Sci. Comput., 2015, vol. 65, no. 1, pp. 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiong, C. and Li, Y., A Posteriori Error Estimates forOptimal Distributed ControlGoverned by the Evolution Equations, Appl. Num. Math., 2011, vol. 61, no. 2, pp. 181–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hou.

Additional information

Original Russian Text © T. Hou, 2018, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2018, Vol. 21, No. 3, pp. 327–337.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, T. Mixed Methods for Optimal Control Problems. Numer. Analys. Appl. 11, 268–277 (2018). https://doi.org/10.1134/S1995423918030072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423918030072

Keywords

Navigation