Skip to main content
Log in

Boundary Optimal Control for a Frictional Contact Problem with Normal Compliance

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider the contact between an elastic body and a deformable foundation. Firstly, we introduce a mathematical model for this phenomenon by means of a normal compliance contact condition associated with a friction law. Then, we propose a variational formulation of the model in a form of a quasi-variational inequality governed by a non-differentiable functional and we briefly discuss its well-possedness. Nextly, we address an optimal control problem related to this model in order to led the displacement field as close as possible to a given target by acting with a localized boundary control. By using some mollifiers of the normal compliance functions, we introduce a regularized model which allows us to establish an optimality condition. Finally, by means of asymptotic analysis tools, we show that the solutions of the regularized optimal control problems converge to a solution of the initial optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amassad, A., Chenais, D., Fabre, C.: Optimal control of an elastic contact problem involving Tresca friction law. Nonlinear Anal. 48, 1107–1135 (2002)

    Article  MathSciNet  Google Scholar 

  2. Andersson, L.-E.: A quasistatic frictional problem with normal compliance. Nonlinear Anal. TMA 16, 347–370 (1991)

    Article  MathSciNet  Google Scholar 

  3. Barbu, V.: Optimal Control of Variational Inequalities. Pitman Advanced Publishing, Boston (1984)

    MATH  Google Scholar 

  4. Bartosz, K., Kalita, P.: Optimal control for a class of dynamic viscoelastic contact problems with adhesion. Dyn. Syst. Appl. 21, 269–292 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Bonnans, J.F., Tiba, D.: Pontryagin’s principle in the control of semiliniar elliptic variational inequalities. Appl. Math. Optim. 23, 299–312 (1991)

    Article  MathSciNet  Google Scholar 

  6. Capatina, A., Timofte, C.: Boundary optimal control for quasistatic bilateral frictional contact problems. Nonlinear Anal. 94, 84–99 (2014)

    Article  MathSciNet  Google Scholar 

  7. Denkowski, Z., Migorski, S., Ochal, A.: Optimal control for a class of mechanical thermoviscoelastic frictional contact problems, a special issue in honour of Professor S. Rolewicz, invited paper. Control Cybern. 36, 611–632 (2007)

    MATH  Google Scholar 

  8. Denkowski, Z., Migorski, S., Ochal, A.: A class of optimal control problems for piezoelectric frictional contact models. Nonlinear Anal. Real World Appl. 12, 1883–1895 (2011)

    Article  MathSciNet  Google Scholar 

  9. Friedman, A.: Optimal Control for Variational Inequalities. SIAM J. Control Optim. 24, 439–451 (1986)

    Article  MathSciNet  Google Scholar 

  10. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)

    Book  Google Scholar 

  11. Kimmerle, S.J., Moritz, R.: Optimal control of an elastic tyre-damper system with road contact. ZAMM, 14, 875–876 (2014). In: Steinmann, P., Leugering, G. (eds.), Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen (2014)

  12. Klarbring, A., Mikelic, A., Shillor, M.: Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26, 811–832 (1988)

    Article  MathSciNet  Google Scholar 

  13. Klarbring, A., Mikelič, A., Shillor, M.: On friction problems with normal compliance. Nonlinear Anal. 13, 935–955 (1989)

    Article  MathSciNet  Google Scholar 

  14. Laursen, T.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)

    MATH  Google Scholar 

  15. Lions, J.-L.: Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968)

    MATH  Google Scholar 

  16. Martins, J.A.C., Oden, J.T.: Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. TMA 11, 407–428 (1987)

    Article  MathSciNet  Google Scholar 

  17. Matei, A., Micu, S.: Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal. 74(5), 1641–1652 (2011)

    Article  MathSciNet  Google Scholar 

  18. Mignot, R.: Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)

    Article  Google Scholar 

  19. Mignot, R., Puel, J.-P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22, 466–476 (1984)

    Article  MathSciNet  Google Scholar 

  20. Neittaanmaki, P., Sprekels, J., Tiba, D.: Optimization of Elliptic Systems: Theory and Applications. Springer Monographs in Mathematics, Springer, New York (2006)

    MATH  Google Scholar 

  21. Oden, J.T., Martins, J.A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 52, 527–634 (1985)

    Article  MathSciNet  Google Scholar 

  22. Popov, V.L.: Contact Mechanics and Friction. Springer, Heidelberg (2010)

    Book  Google Scholar 

  23. Rochdi, M., Shillor, M., Sofonea, M.: Quasistatic viscoelastic contact with normal compliance and friction. J. Elast. 51, 105–126 (1998)

    Article  MathSciNet  Google Scholar 

  24. Shillor, M., Sofonea, M., Telega, J.J.: Models and Variational Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)

    Book  Google Scholar 

  25. Sofonea, M., Matei, A.: Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems. Advances in Mechanics and Mathematics, vol. 18. Springer, New York (2009)

    MATH  Google Scholar 

  26. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics, London Mathematical Society, Lecture Note Series 398. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  27. Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer, Berlin (1991)

    MATH  Google Scholar 

  28. Strömberg, N.: Thermomechanical Modelling of Tribological Systems, Ph.D. Thesis 497, Linköping University, Linköping (1997)

  29. Strömberg, N., Johansson, L., Klarbring, A.: Generalized standard model for contact friction and wear. In: Raous, M., Jean, M., Moreau, J.J. (eds.) Contact Mechanics. Plenum Press, New York (1995)

    MATH  Google Scholar 

  30. Strömberg, N., Johansson, L., Klarbring, A.: Derivation and analysis of a generalized standard model for contact friction and wear. Int. J. Solids Struct. 33, 1817–1836 (1996)

    Article  MathSciNet  Google Scholar 

  31. Touzaline, A.: Optimal control of a frictional contact problem. Acta Math. Appl. Sin. Engl. Ser. 31(4), 991–1000 (2015)

    Article  MathSciNet  Google Scholar 

  32. Willner, K.: Kontinuums- und Kontaktmechanik. Springer, Berlin (2003)

    Book  Google Scholar 

  33. Wriggers, P., Laursen, T.: Computational Contact Mechanics: CISM Courses and Lectures, vol. 298. Springer, New York (2007)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Project number PN-II-ID-PCE-2011-3-0257 and by a LEA MATH-MODE Project CNRS-IMAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andaluzia Matei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matei, A., Micu, S. Boundary Optimal Control for a Frictional Contact Problem with Normal Compliance. Appl Math Optim 78, 379–401 (2018). https://doi.org/10.1007/s00245-017-9410-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9410-8

Keywords

Mathematics Subject Classification

Navigation