Skip to main content
Log in

Convergence to equilibrium of global weak solutions for a Cahn–Hilliard–Navier–Stokes vesicle model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider a model describing the dynamics of vesicle membranes within an incompressible viscous fluid in 3D domains. The system consists of the Navier–Stokes equations, with an extra stress tensor depending on the membrane, coupled with a Cahn–Hilliard phase-field equation associated with a bending energy plus a penalization related to the area conservation (volume is exactly conserved). This problem has a dissipative in time free energy which leads, in particular, to prove the existence of global in time weak solutions. We analyze the large-time behavior of the weak solutions. By using a modified Lojasiewicz–Simon’s result, we prove the convergence as time goes to infinity of each (whole) trajectory to a single equilibrium. Finally, the convergence of the trajectory of the phase is improved by imposing more regularity on the domain and initial phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brézis, H.: Analyse Fonctionnelle: Theorie et Applications. Dunod, Malakoff (1999)

    MATH  Google Scholar 

  2. Campelo, F., Hernández-Machado, A.: Model for curvature-driven pearling instability in membranes. Phys. Rev. Lett. 99(8), 1–4 (2007)

    Article  Google Scholar 

  3. Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)

    Article  MathSciNet  Google Scholar 

  4. Climent-Ezquerra, B., Guillén-González, F.: Global in time solution and time-periodicity for a smectic-A liquid crystal model. Commun. Pure Appl. Anal. 9(6), 1473–1493 (2010)

    Article  MathSciNet  Google Scholar 

  5. Climent-Ezquerra, B., Guillén-González, F.: Convergence to equilibrium for smectic-A liquid crystals in 3D domains without constraints for the viscosity. Nonlinear Anal. 102, 208–219 (2014)

    Article  MathSciNet  Google Scholar 

  6. Climent-Ezquerra, B., Guillén-González, F.: Long-time behavior of a Cahn–Hilliard–Navier–Stokes vesicle-fluid interaction model. In: Trends in Differential Equations and Applications, pp. 125–145, SEMA SIMAI Springer Series, 8. Springer (2016)

  7. Colli, P., Laurencot, P.: A phase-field approximation of the Willmore flow with volume and area cosntraints. SIAM J. Math. Anal. 44(6), 3734–3754 (2012)

    Article  MathSciNet  Google Scholar 

  8. Constantin, P., Foias, C.: Navier–Stokes Equations. University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  9. Du, Q., Li, M., Liu, C.: Analysis of a phase field Navier–Stokes vesicle-fluid interaction model. Discrete Continuous Dyn. Syst. B 8(3), 539–556 (2007)

    Article  MathSciNet  Google Scholar 

  10. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    Article  MathSciNet  Google Scholar 

  11. Du, Q., Liu, C., Wang, X.: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212, 757–777 (2006)

    Article  MathSciNet  Google Scholar 

  12. Du, Q., Wang, X.: Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int. J. Numer. Anal. Model 4, 441–459 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Du, Q., Liu, C., Ryham, R., Wang, X.: Energetic variational approaches in modeling vesicle and fluid interactions. Physica D 238, 923–930 (2009)

    Article  MathSciNet  Google Scholar 

  14. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Series of Applied Mathematical Sciences, vol. 159. Springer, Berlin (2004)

    Book  Google Scholar 

  15. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann. I. H. Poincaré (C) Analyse non linéaire 27, 401–436 (2010)

    Article  MathSciNet  Google Scholar 

  16. Guillén-González, F., Tierra, G.: Unconditionally energy stable numerical schemes for phase-field vesicle membrane model. J. Comput. Phys. 354, 67–85 (2018)

    Article  MathSciNet  Google Scholar 

  17. Helfrich, W.: Elastic properties of lipid bilayers-theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973)

    Article  Google Scholar 

  18. Huang, S.Z.: Gradient Inequalities: With Applications to Asymptotic Behavior and Stability of Gradient-like Systems. Mathematical Surveys and Monographs, vol. 126. AMS, Providence (2006)

    Book  Google Scholar 

  19. Liu, C., Takahashi, T., Tucsnak, M.: Strong solutions for a phase-filed Navier–Stokes Vesicle-Fluid interaction model. J. Math. Fluid Mech. 14, 177–195 (2012)

    Article  MathSciNet  Google Scholar 

  20. Petzeltova, H., Rocca, E., Schimperna, G.: On the long-time behavior of some mathematical models for nematic liquid crystals. Calc. Var. 46, 623–639 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ponce, G., Racke, R., Sideris, T.S., Titi, E.S.: Global stability of large solutions to the 3D Navier–Stokes equations. Commun. Math. Phys. 159, 329–341 (1994)

    Article  Google Scholar 

  22. Royden, H.L.: Real Analysis. Macmillan, London (1988)

    MATH  Google Scholar 

  23. Segatti, A., Wu, H.: Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows. SIAM J. Math. Anal. 43(6), 2445–2481 (2011)

    Article  MathSciNet  Google Scholar 

  24. Simon, J.: Compact sets in the space \(L^p(0,T;B)\). Ann. Mat. Pura Appl. 146(4), 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  25. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  26. Wu, H., Xu, X.: Strong solutions, global regularity and stability of a hydrodynamic system modeling vesicle and fluid interactions. SIAM J. Math. Anal. 45(1), 181–214 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially financed by the MINECO Grant MTM2015-69875-P (Spain) with the participation of FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Climent-Ezquerra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially financed by the MINECO Grant MTM2015-69875-P (Spain) with the participation of FEDER.

Appendix

Appendix

Proof of Lemma 3.1

Let us remember that \(F(\phi )=\displaystyle \frac{1}{4}(\phi ^2-1)^2\), \(F'(\phi )=(\phi ^2-1)\phi \), \(F''(\phi )=3\phi ^2-1\), \(F'''(\phi )=6\phi \) and \({\mathcal {A}}(\phi )=\displaystyle \int _\Omega \left( \displaystyle \frac{\varepsilon }{2}\vert \nabla \phi \vert ^2+\displaystyle \frac{1}{\varepsilon }F(\phi )\right) \, {\text {d}}{{\varvec{x}}}\). We prove the first inequality for \(j=0\):

$$\begin{aligned} \vert F(\phi _i)\vert _p= \displaystyle \frac{1}{4}\vert \phi ^4+2\phi ^2-1\vert _p \le C(\vert \phi \vert _\infty ^4+2\vert \phi \vert _\infty ^2+1) \le C(\Vert \phi \Vert _2^4+2\Vert \phi \Vert _2^2+1)\le C(K), \end{aligned}$$

The cases \(j=1,2,3\) can be proved in an analogous way. We prove now the second inequality for \(j=0\):

$$\begin{aligned} \begin{array}{l} \vert F(\phi _1)-F(\phi _2)\vert _p\le \vert F'(\theta \phi _1+(1-\theta )\phi _2)\vert _\infty \vert \phi _1-\phi _2\vert _p \le C(K)\vert \phi _1-\phi _2\vert _p. \end{array} \end{aligned}$$

The cases \(j=1,2,3\) can be proved in an analogous way. Finally, the third one is as follows:

$$\begin{aligned} \begin{array}{c} \displaystyle \vert {\mathcal {A}}(\phi _1)-{\mathcal {A}}(\phi _2)\vert \le \displaystyle \frac{1}{2}\vert |\nabla \phi _1|_2^2-|\nabla \phi _2|_2^2\vert + \displaystyle \int \limits _\Omega |F(\phi _1) - F(\phi _2)| \\ \displaystyle \le \displaystyle \frac{1}{2}\vert \nabla (\phi _1+\phi _2)\vert _2\vert \nabla (\phi _1-\phi _2)\vert _2 +C(K)\vert \phi _1-\phi _2\vert _1 \le C(K)\Vert \phi _1-\phi _2\Vert _1. \end{array} \end{aligned}$$

\(\square \)

Proof of Lemma 3.2

From (2.11), we have that

$$\begin{aligned} \begin{array}{l} \vert G(\phi _1)-G(\phi _2)\vert _2\le \displaystyle \frac{2}{\varepsilon }\vert F''(\phi _1)\Delta \phi _1-F''(\phi _2)\Delta \phi _2\vert _2 \\ \qquad +\,\displaystyle \frac{1}{\varepsilon }\vert F'''(\phi _1)\vert \nabla \phi _1\vert ^2-F'''(\phi _2)\vert \nabla \phi _2\vert ^2\vert _2 +\displaystyle \frac{1}{\varepsilon ^3}\vert F'(\phi _1)F''(\phi _1)-F'(\phi _2)F''(\phi _2)\vert _2 \\ \qquad +\,\varepsilon M\vert ({\mathcal {A}}(\phi _1)-\alpha )\Delta \phi _1-({\mathcal {A}}(\phi _2)-\alpha )\Delta \phi _2\vert _2 \\ \qquad +\,\displaystyle \frac{M}{\varepsilon } \vert ({\mathcal {A}}(\phi _1)-\alpha )F'(\phi _1)-({\mathcal {A}}(\phi _2)-\alpha )F'(\phi _2)\vert _2 :=\sum _{i=1}^5 I_i. \end{array} \end{aligned}$$
(8.1)

By taking into account Lemma 3.1, we can estimate each term \(I_i\). For example,

$$\begin{aligned} I_1= & {} \displaystyle \frac{2}{\varepsilon }\vert F''(\phi _1)\Delta \phi _1-F''(\phi _2)\Delta \phi _2\vert _2 \\\le & {} C( \vert (F''(\phi _1)-F''(\phi _2))\Delta \phi _1\vert _2+\vert F''(\phi _2)(\Delta \phi _1-\Delta \phi _2)\vert _2) \\\le & {} C( \vert \Delta \phi _1\vert _2\vert F''(\phi _1)-F''(\phi _2)\vert _\infty + \vert F''(\phi _2)\vert _\infty \vert \Delta \phi _1-\Delta \phi _2\vert _2) \\\le & {} C(\Vert \phi _1\Vert _2 C(K)\vert \phi _1-\phi _2\vert _\infty + C(K)\Vert \phi _1- \phi _2\Vert _2) \\\le & {} C(K)\Vert \phi _1-\phi _2\Vert _2. \\ I_2= & {} \displaystyle \frac{1}{\varepsilon }\vert F'''(\phi _1)\vert \nabla \phi _1\vert ^2-F'''(\phi _2)\vert \nabla \phi _2\vert ^2\vert _2 \\\le & {} C (\vert (F'''(\phi _1)- F'''(\phi _2))\vert \nabla \phi _1\vert ^2\vert _2+\vert F'''(\phi _2)(\vert \nabla \phi _1\vert ^2-\vert \nabla \phi _2\vert ^2)\vert _2) \\\le & {} C (\vert \nabla \phi _1\vert ^2_6\vert F'''(\phi _1)- F'''(\phi _2)\vert _6+\vert F'''(\phi _2)\vert _6\vert \nabla \phi _1+\nabla \phi _2\vert _6\vert \nabla \phi _1-\nabla \phi _2\vert _6) \\\le & {} C (\Vert \phi _1\Vert ^2_2C(K)\vert \phi _1- \phi _2\vert _6+C(K)\Vert \phi _1+\phi _2\Vert _2\Vert \phi _1-\phi _2\Vert _2) \\\le & {} C(K)\Vert \phi _1-\phi _2\Vert _2. \end{aligned}$$

Observe that

$$\begin{aligned} \vert {\mathcal {A}}(\phi _2)-\alpha \vert \le C( \vert \nabla \phi _2\vert _2^2+\vert \phi _2^2-1\vert _2^2) \le C(\Vert \phi _2\Vert _1^2+\Vert \phi _2\Vert _2^4+1)\le C(K), \end{aligned}$$

therefore,

$$\begin{aligned} I_4= & {} \varepsilon M\vert ({\mathcal {A}}(\phi _1)-\alpha )\Delta \phi _1-({\mathcal {A}}(\phi _2)-\alpha )\Delta \phi _2\vert _2 \\\le & {} C(\vert {\mathcal {A}}(\phi _1)-{\mathcal {A}}(\phi _2)\vert \, \vert \Delta \phi _1\vert _2+\vert {\mathcal {A}}(\phi _2)-\alpha \vert \, \vert \Delta (\phi _1-\phi _2 )\vert _2) \\\le & {} C(K)(\Vert \phi _1-\phi _2\Vert _1+\Vert \phi _1-\phi _2\Vert _2) \le C(K)\Vert \phi _1-\phi _2\Vert _2, \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Climent-Ezquerra, B., Guillén-González, F. Convergence to equilibrium of global weak solutions for a Cahn–Hilliard–Navier–Stokes vesicle model. Z. Angew. Math. Phys. 70, 125 (2019). https://doi.org/10.1007/s00033-019-1168-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1168-1

Keywords

Mathematics Subject Classification

Navigation