Skip to main content
Log in

Global stability of large solutions to the 3D Navier-Stokes equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the stability of mildly decaying global strong solutions to the Navier-Stokes equations in three space dimensions. Combined with previous results on the global existence of large solutions with various symmetries, this gives the first global existence theorem for large solutions with approximately symmetric initial data. The stability of unforced 2D flow under 3D perturbations is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Constantin, P., Foias, C.: Navier-Stokes equations. Lectures in Mathematics. Chicago: The University of Chicago Press, 1988

    Google Scholar 

  2. Giga, Y.: Regularity criteria for weak solutions of the Navier-Stokes system. Proc. Symposia in Pure Math.45, Providence, RI: AMS 1986, pp. 449–453

    Google Scholar 

  3. Grauer, R., Sideris, T.C.: Numerical computation of 3D incompressible ideal fluids with swirl. Phys. Rev. Lett.67, 3511–3514 (1991)

    Google Scholar 

  4. Heywood, J.G.: The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J.29, 639–681 (1980)

    Article  Google Scholar 

  5. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr.4, 213–231 (1951)

    Google Scholar 

  6. Kajikiya, R., Miyakawa, T.: OnL 2 decay of weak solutions of the Navier-Stokes equations in ℝn. Math. Z.192, 135–148 (1986)

    Article  Google Scholar 

  7. Kato, T.: StrongL p-solutions of the Navier-Stokes equation in ℝm, with applications to weak solutions. Math. Z.187, 471–480 (1984)

    Article  Google Scholar 

  8. Ladyzhenskaya, O. A.: The mathematical theory of viscous incompressible flow. New York: Gordon and Breach Science Publishers, 1969

    Google Scholar 

  9. Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math.63, 193–248 (1934)

    Google Scholar 

  10. Leray, J.: Étude de diverses équations intégrales non linéares et de quelques problèmes que pose l'Hydrodynamique. J. Math. Pure Appl.12, 1–82 (1933)

    Google Scholar 

  11. Lions, J. L.: Sur la regularité et l'unicité des solutions turbulentes des équations de Navier Stokes. Rend. Sem. Mat. Padova,30, 16–23 (1960)

    Google Scholar 

  12. Mahalov, A., Titi, E. S., Leibovich, S.: Invariant helical subspaces for the Navier-Stokes equations. Arch. Rat. Mech. Anal.112, 193–222 (1990)

    Article  Google Scholar 

  13. Prodi, G.: Un teorema di unicita per le equazioni di Navier-Stokes. Annali di Mat.48, 173–182 (1959)

    Google Scholar 

  14. Pumir, A., Siggia, E.: Development of singular solutions to the axisymmetric Euler equations. Phys. Fluids A4, 1472–1491 (1992)

    Article  Google Scholar 

  15. Schonbek, M. E.: Large time behaviour of solutions to the Navier-Stokes equations. Comm. P. D. E.11, 733–763 (1986)

    Google Scholar 

  16. Serrin, J.: The initial value problem for the Navier-Stokes equations. Nonlinear Problems, R. E. Langer, (ed.), Madison, Wis.: University of Wisconsin Press, 1963, pp. 69–98

    Google Scholar 

  17. Sohr, H.: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z.184, 359–375 (1983)

    Article  Google Scholar 

  18. Stein, E. M.: Singular integrals and differentiability properties of functions. Princeton NJ: Princeton University Press 1970

    Google Scholar 

  19. Temam, R.: The Navier-Stokes equations. Theory and numerical analysis. Amsterdam: North-Holland 1979

    Google Scholar 

  20. Ukhovskii, M. R., Iudovich, V. I.: Axially symmetric flows of ideal and viscous fluids filling the whole space. J. Appl. Math. Mech.32, 52–62 (1968)

    Article  Google Scholar 

  21. von Wahl, W.: The equations of Navier-Stokes and abstract parabolic equations. Aspects of Mathematics, E8. Braunschweig/Wiesbaden: Friedr. Vieweg & Sohn 1985

    Google Scholar 

  22. Wiegner, M.: Decay and stability inL p for strong solutions of Cauchy problem for the Navier-Stokes equations. The Navier-Stokes equations. Theory and numerical methods. Proceedings Oberwolfach (1988), eds. J.G. Heywood, et al, Lect. Notes Math.1431, Berlin, Heidelberg, New York: Springer 1990, pp. 95–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce, G., Racke, R., Sideris, T.C. et al. Global stability of large solutions to the 3D Navier-Stokes equations. Commun.Math. Phys. 159, 329–341 (1994). https://doi.org/10.1007/BF02102642

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102642

Keywords

Navigation