Skip to main content
Log in

Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the present paper, a two-dimensional solid consisting of a linear elastic isotropic material, for which the deformation energy depends on the second gradient of the displacement, is considered. The strain energy is demonstrated to depend on 6 constitutive parameters: the 2 Lamé constants (\({\lambda}\) and \({\mu}\)) and 4 more parameters (instead of 5 as it is in the 3D-case). Analytical solutions for classical problems such as heavy sheet, bending and flexure are provided. The idea is very simple: The solutions of the corresponding problem of first gradient classical case are imposed, and the corresponding forces, double forces and wedge forces are found. On the basis of such solutions, a method is outlined, which is able to identify the six constitutive parameters. Ideal (or Gedanken) experiments are designed in order to write equations having as unknowns the six constants and as known terms the values of suitable experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenbach H., Eremeev V.A., Morozov N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45(3), 331–342 (2010)

    Article  Google Scholar 

  3. Auffray N.: On the isotropic moduli of 2D strain-gradient elasticity. Contin. Mech. Thermodyn. 27(1–2), 5–19 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bersani A.M., Giorgio I., Tomassetti G.: Buckling of an elastic hemispherical shell with an obstacle. Contin. Mech. Thermodyn. 25(2–4), 443–467 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bilotta A., Turco E.: A numerical study on the solution of the Cauchy problem in elasticity. Int. J. Solids Struct. 46(25–26), 4451–4477 (2009)

    Article  MATH  Google Scholar 

  6. Carassale L., Freda A., Marrè-Brunenghi M.: Effects of free-stream turbulence and corner shape on the galloping instability of square cylinders. J. Wind Eng. Ind. Aerodyn. 123, 274–280 (2013)

    Article  Google Scholar 

  7. Cazzani A., Ruge P.: Numerical aspects of coupling strongly frequency-dependent soil-foundation models with structural finite elements in the time-domain. Soil Dyn. Earthq. Eng. 37, 56–72 (2012)

    Article  Google Scholar 

  8. Cesarano C., Assante D.: A note on generalized Bessel functions. Int. J. Math. Models Methods Appl. Sci. 8(1), 38–42 (2014)

    Google Scholar 

  9. Cuomo M., Contrafatto L., Greco L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  10. de Oliveira Góes R.C., de Castro J.T.P., Martha L.F.: 3D effects around notch and crack tips. Int. J. Fatigue 62, 159–170 (2014)

    Article  Google Scholar 

  11. Dos Reis F., Ganghoffer J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112–113, 354–363 (2012)

    Article  Google Scholar 

  12. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  13. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Mech. Math. Solids 20, 887–928 (2015). doi:10.1177/1081286513509811

  14. dell’Isola F., Gouin H., Seppecher P.: Radius and surface tension of microscopic bubbles by second gradient theory. C. R. Acad. Sci. Ser. 320(6), 211–216 (1995)

    MATH  Google Scholar 

  15. dell’Isola F., Gouin H., Rotoli G.: Nucleation of spherical shell-like interfaces by second gradient theory: Numerical simulations. Eur. J. Mech. B/Fluids 15(4), 545–568 (1996)

    MATH  Google Scholar 

  16. dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

    Article  MATH  Google Scholar 

  17. dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D Continua. Z. Angew. Math. Mech. 92(1), 52–71 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. dell’Isola, F., Madeo, A., Seppecher, P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. dell’Isola F., Rotoli G.: Validity of Laplace formula and dependence of surface tension on curvature in second gradient fluids. Mech. Res. Commun. 22(5), 485–490 (1995)

    Article  MATH  Google Scholar 

  20. dell’Isola, F., Sciarra, G., Batra, R.: A second gradient model for deformable porous matrices filled with an inviscid fluid. In: IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media. Solid Mechanics and its Applications, vol. 125, pp. 221–229 (2005)

  21. dell’Isola F., Sciarra G., Batra R.: Static deformations of a linear elastic porous body filled with an inviscid fluid. J. Elast. 72(1–2), 99–120 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. R. Soc. Lond. 465(107), 2177–2196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. dell’Isola, F., Seppecher, P.: Commentary about the paper hypertractions and hyperstresses convey the same mechanical information. Contin. Mech. Thermodyn. 22, 163–176 (2010) by Prof. Podio Guidugli and Prof. Vianello and some related papers on higher gradient theories. Contin. Mech. Thermodyn. 23(5), 473–478 (2011): R. Soc. Lond. ,

  24. dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. C. R. Acad. Sci. Ser. 321, 303–308 (1995)

    MATH  Google Scholar 

  26. dell’Isola F., Steigmann D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Federico S.: On the linear elasticity of porous materials. Int. J. Mech. Sci. 52, 175–182 (2010)

    Article  Google Scholar 

  28. Federico S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Nonlinear Mech. 47, 273–284 (2012)

    Article  Google Scholar 

  29. Federico S.: Volumetric-distortional decomposition of deformation and elasticity tensor. Math. Mech. Solids 15, 672–690 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Federico S., Grillo A., Herzog W.: A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties. J. Mech. Phys. Solids 52, 2309–2327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Federico, S., Grillo, A., Imatani, S.: The linear elasticity tensor of incompressible materials. Math. Mech. Solids 20(6), 643–662 (2015). doi:10.1177/1081286514550576

  32. Federico S., Grillo A., Wittum G.: Considerations on incompressibility in linear elasticity. Nuovo Cimento C 32, 81–87 (2009)

    Google Scholar 

  33. Ferretti M., Madeo A., dell’Isola F., Boisse P.: Modelling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory. Z. Angew. Math. Phys. 65(3), 587–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Goda I., Assidi M., Ganghoffer J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)

    Article  Google Scholar 

  35. Goda I., Rahouadj R., Ganghoffer J.-F.: Size dependent static and dynamic behavior of trabecular bone based on micromechanical models of the trabecular architecture. Int. J. Eng. Sci. 72, 53–77 (2013)

    Article  Google Scholar 

  36. Goda I., Assidi M., Belouettar S., Ganghoffer J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16(1), 87–108 (2012)

    Article  Google Scholar 

  37. Garusi E., Tralli A., Cazzani A.: An unsymmetric stress formulation for Reissner-Mindlin plates: a simple and locking-free rectangular element. Int. J. Comput. Eng. Sci. 5(3), 589–618 (2004)

    Article  Google Scholar 

  38. Greco L., Cuomo M.: Consistent tangent operator for an exact Kirchhoff rod model. Contin. Mech. Thermodyn. 27(4), 861–877 (2015)

    Article  MathSciNet  Google Scholar 

  39. Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  40. Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013)

    Article  MathSciNet  Google Scholar 

  41. Madeo A., dell’Isola F., Ianiro N., Sciarra G.: A variational deduction of second gradient poroelasticity II: An application to the consolidation problem. J. Mech. Mater. Struct. 3(4), 607–625 (2008)

    Article  Google Scholar 

  42. Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Band gaps in the relaxed linear micromorphic continuum. Z. Angew. Math. Mech. 95(9), 880–887 (2015). doi:10.1002/zamm.201400036

  43. Mindlin, R.D.: Micro-structure in Linear Elasticity. Department of Civil Engineering, Columbia University, New York (1964)

  44. Misra A., Singh V.: Nonlinear granular micromechanics model for multi-axial rate-dependent behavior. Int. J. Solids Struct. 51(13), 2272–2282 (2014)

    Article  Google Scholar 

  45. Misra A., Parthasarathy R., Singh V., Spencer P.: Micro-poromechanics model of fluid-saturated chemically active fibrous media. Z. Angew. Math. Mech. 95(2), 215–234 (2015)

    Article  MathSciNet  Google Scholar 

  46. Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26(5), 639–681 (2014). ISSN:0935-1175. doi:10.1007/s00161-013-0322-9

  47. Neff P., Jeong J., Ramézani H.: Subgrid interaction and micro-randomness—novel invariance requirements in infinitesimal gradient elasticity. Int. J. Solids Struct. 46(25), 4261–4276 (2009)

    Article  MATH  Google Scholar 

  48. Nguyen C.H., Freda A., Solari G., Tubino F.: Aeroelastic instability and wind-excited response of complex lighting poles and antenna masts. Eng. Struct. 85, 264–276 (2015)

    Article  Google Scholar 

  49. Pagnini L.: Reliability analysis of wind-excited structures. J. Wind Eng. Ind. Aerodyn. 98(1), 1–9 (2010)

    Article  MathSciNet  Google Scholar 

  50. Pagnini L.C., Solari G.: Serviceability criteria for wind-induced acceleration and damping uncertainties. J. Wind Eng. Ind. Aerodyn. 74–76, 1067–1078 (1998)

    Article  Google Scholar 

  51. Pagnini L.C.: Model reliability and propagation of frequency and damping uncertainties in the dynamic along-wind response of structures. J. Wind Eng. Ind. Aerodyn. 59(2–3), 211–231 (1996)

    Article  Google Scholar 

  52. Piccardo G., Ranzi G., Luongo A.: A complete dynamic approach to the Generalized Beam Theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8), 900–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. ISSN:0935-1175. doi:10.1007/s00161-014-0405-2

  54. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4), 623–638 (2015). ISSN:0935-1175. doi:10.1007/s00161-14-0338-9

  55. Placidi, L., El Dhaba, A.R.: Semi-inverse method la Saint-Venant for two-dimensional linear isotropic homogeneous second gradient elasticity. Mech. Math. Solids (accepted). ISSN:1081-2865

  56. Rinaldi A., Placidi L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. Z. Angew. Math. Mech. 94, 862–877 (2015)

    Article  MathSciNet  Google Scholar 

  57. Rosi G., Giorgio I., Eremeyev V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Z. Angew. Math. Mech. 93(12), 914–927 (2013)

    Article  MathSciNet  Google Scholar 

  58. Roveri N., Carcaterra A., Akay A.: Vibration absorption using non-dissipative complex attachments with impacts and parametric stiffness. J. Acoust. Soc. Am. 126(5), 2306–2314 (2009)

    Article  Google Scholar 

  59. Sansour C., Skatulla S.: A strain gradient generalized continuum approach for modelling elastic scale effects. Comput. Methods Appl. Mech. Eng. 198(15), 1401–1412 (2009)

    Article  MATH  Google Scholar 

  60. Sciarra G., dell’Isola F., Coussy O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  61. Sciarra G., dell’Isola F., Ianiro N., Madeo A.: A variational deduction of second gradient poroelasticity part I: general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  62. Selvadurai A.P.S.: Plane strain problems in second-order elasticity theory. Int. J. Nonlinear Mech. 8(6), 551–563 (1973)

    Article  MATH  Google Scholar 

  63. Selvadurai A.P.S., Spencer A.J.M.: Second-order elasticity with axial symmetry-I. General theory. Int. J. Eng. Sci. 10(2), 97–114 (1972)

    Article  MATH  Google Scholar 

  64. Seppecher P., Alibert J.-J., dell’Isola F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 13 (2011)

    Google Scholar 

  65. Solari G., Pagnini L.C., Piccardo G.: A numerical algorithm for the aerodynamic identification of structures. J. Wind Eng. Ind. Aerodyn. 69–71, 719–730 (1997)

    Article  Google Scholar 

  66. Steigmann D.J.: Linear theory for the bending and extension of a thin, residually stressed, fiber-reinforced lamina. Int. J. Eng. Sci. 47(11–12), 1367–1378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. Steigmann D.J., dell’Isola F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin./Lixue Xuebao 31(3), 373–382 (2015)

    Article  MathSciNet  Google Scholar 

  68. Terravecchia, S., Panzeca, T., Polizzotto, C.: Strain gradient elasticity within the symmetric BEM formulation. Fract. Struct. Integr. 29, 61–73 (2014)

    Google Scholar 

  69. Turco E.: Identification of axial forces on statically indeterminate pin-jointed trusses by a nondestructive mechanical test. Open Civ. Eng. J. 7(1), 50–57 (2013)

    Article  Google Scholar 

  70. Walpole L.J.: Elastic behavior of composite materials: theoretical foundations. Adv. Mech. 21, 169–242 (1981)

    Article  MATH  Google Scholar 

  71. Walpole L.J.: Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. Lond. Ser. A 391, 149–179 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  72. Yang Y., Misra A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Placidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Placidi, L., Andreaus, U., Corte, A.D. et al. Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66, 3699–3725 (2015). https://doi.org/10.1007/s00033-015-0588-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0588-9

Mathematics Subject Classification

Keywords

Navigation