Skip to main content
Log in

Study of a new class of nonlinear inextensible elastic bodies

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the consequences of the constraint of inextensibility with regard to a class of constitutive relations, where the strain is given as a function of the stress. Such constitutive equations belong to a wider class of implicit constitutive relations, which have been proposed recently in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adkins, J.E., Rivlin, R.S.: Large elastic deformations of isotropic materials X. Reinforcement by intextensible cords. Proc. R. Soc. A 248, 201–223 (1955). Also see G.I. Barenblatt, D.D. Joseph (eds.) Collected papers of R.S. Rivlin, Springer, New York, pp. 488–510 (1997)

  2. Antman S.S, Marlow R.S.: Material constraints, Lagrange multipliers, and compatibility. Applications to rod and shell theories. Arch. Rat. Mech. Anal. 116, 257–299 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beskos D.E.: Universal solutions for fiber-reinforced compressible, isotropic elastic materials. J. Elast. 2, 153–168 (1972)

    Article  Google Scholar 

  4. Bustamante R.: Some topics on a new class of elastic bodies. Proc. R. Soc. A 465, 1377–1392 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bustamante R., Rajagopal K.R.: A note on plain strain and stress problems for a new class of elastic bodies. Math. Mech. Solids 15, 229–238 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bustamante R., Rajagopal K.R.: Solutions of some boundary value problems for a new class of elastic bodies undergoing small strains. Comparison with the predictions of the classical theory of linearized elasticity: part I. Problems with cylindrical symmetry. Acta Mech. 226, 1815–1838 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bustamante R., Rajagopal K.R.: Solutions of some boundary value problems for a new class of elastic bodies. Comparison with the classical theory of linearized elasticity: part II. A problem with spherical symmetry. Acta Mech. 226, 1807–1813 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bustamante, R., Rajagopal, K.R.: On the consequences of the constraint of incompressibility with regard to a new class of constitutive relations for elastic bodies: small displacement gradient approximation. Contin. Mech. Therm. doi:10.1007/s00161-015-0425-6

  9. Casey J.: A treatment of internally constrained materials. J. Appl. Mech. 62, 542–543 (1995)

    Article  MATH  Google Scholar 

  10. Chadwick P.: Continuum Mechanics: Concise Theory and Problems. Dover, Mineola (1999)

    Google Scholar 

  11. England A.H.: The stress boundary value problem for plane strain deformations of an ideal fibre-reinforced material. J. Inst. Math. Appl. 9, 310–322 (1972)

    Article  MATH  Google Scholar 

  12. England A.H.: Plane problems for fibre-reinforced linearly elastic solids. In: Spencer, A.J.M. (ed.) Continuum Theory of the Mechanics of Fibre-Reinforced Composites, pp. 73–121. Springer, Wien, New York (1984)

    Chapter  Google Scholar 

  13. Ericksen J.L.: Deformations possible in every isotropic, incompressible, perfectly elastic body. Z. Angew. Math. Phys. 5, 466–489 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. J. Rat. Mech. Anal. 3, 281–301 (1954). Also see G.I. Barenblatt, D.D. Joseph (eds.) Collected papers of R.S. Rivlin, Springer, New York, pp. 467–487 (1997)

  15. Freed A.D.: Soft Solids. A Primer to the Theoretical Mechanics of Materials. Birkhäuser, Boston (2014)

    MATH  Google Scholar 

  16. Grasley, Z., El-Helou, R., Dambrosia, M., Mokarem, D., Moen, C., Rajagopal, K.: Model of infinitesimal nonlinear elastic response of concrete subjected to uniaxial compression. J. Eng. Mech. doi:10.1061/(ASCE)EM.1943-7889.0000938

  17. Green A.E., Adkins J.E.: Large Elastic Deformations. Claredon Press, Oxford (1970)

    MATH  Google Scholar 

  18. Gree A.E., Shield R.T.: Finite elastic deformation of incompressible isotropic bodies. Proc. R. Soc. Lond. A 202, 407–419 (1950)

    Article  Google Scholar 

  19. Hayes M., Horgan C.O.: On the displacement boundary value problem for incompressible elastic materials. Quart. J. Mech. Appl. Math. 27, 287–297 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hayes M., Horgan C.O.: On mixed boundary value problems for inextensible elastic materials. Z. Angew. Math. Phys. 26, 261–272 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  21. John F.: Partial Differential Equations. Springer, New York (1991)

    Google Scholar 

  22. Love A.E.: A Treatise on the Mathematical Theory of Elasticity. Dover, Mineola (1944)

    MATH  Google Scholar 

  23. Morland L.W.: A plane theory of inextensible transversely isotropic elastic composites. Int. J. Solids Struct. 9, 1501–1518 (1973)

    Article  MATH  Google Scholar 

  24. Noll W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rat. Mech. Anal. 2, 197–226 (1958)

    Article  MATH  Google Scholar 

  25. Ortiz-Bernardin A., Bustamante R., Rajagopal K.R.: A numerical study of elastic bodies that are described by constitutive equations that exhibit limited strains. Int. J. Solids Struct. 51, 875–885 (2014)

    Article  Google Scholar 

  26. Pipkin A.C.: Constraints in linearly elastic materials. J. Elast. 6, 179–193 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  27. Poincaré, H.: Leçons sure la théorie de l’élasticité. Georges Carré Ed., Paris (1892)

  28. Perlácová T., Prus̆a V.: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton. Fluid Mech. 216, 13–21 (2015)

    Article  Google Scholar 

  29. Rajagopal K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rajagopal K.R, Srinivasa A.R.: On the nature of constraints for continue undergoing dissipative processes. Proc. R. Soc. A 461, 2785–2795 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rajagopal K.R, Saccomandi G.: On internal constraints in continuum mechanics. Differential Equations in Nonlinear Mechanics, vol. 2006, Article 18572, pp. 1–12 (2006)

  32. Rajagopal K.R.: The elasticity of elasticity. Z. Angew. Math. Phys. 58, 309–317 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rajagopal K.R, Srinivasa A.R.: On the response of non-dissipative solids. Proc. R. Soc. A 463, 357–367 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rajagopal K.R, Srinivasa A.R.: On a class of non-dissipative solids that are not hyperelastic. Proc. R. Soc. A 465, 493–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rajagopal K.R.: Conspectus of concepts of elasticity. Math. Mech. Solids 16, 536–562 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rajagopal K.R., Walton J.R.: Modeling fracture in the context of strain-limiting theory of elasticity: a single anti-plane crack. Int. J. Fract. 169, 39–48 (2011)

    Article  MATH  Google Scholar 

  37. Rajagopal K.R.: On the nonlinear elastic response of bodies in the small strain range. Acta Mech. 225, 1545–1553 (2013)

    Article  Google Scholar 

  38. Rajagopal K.R.: A note on material symmetry for bodies defined by implicit constitutive relations. Mech. Res. Commun. 64, 38–41 (2015)

    Article  Google Scholar 

  39. Rivlin, R.S.: Large elastic deformations of isotropic materials I. Fundamental concepts. Philos. Trans. R. Soc. A 240, 459–490 (1948). Also see G.I. Barenblatt, D.D. Joseph (eds.) Collected papers of R.S. Rivlin, Springer, New York, pp. 23–54 (1997)

  40. Rogers T.G.: Finite deformation and stress in ideal fibre-reinforced materials. In: Spencer, A.J.M. (ed.) Continuum Theory of the Mechanics of Fibre-Reinforced Composites, pp. 33–71. Springer, Wien, New York (1984)

    Chapter  Google Scholar 

  41. Saccomandi G., Beatty M.F.: Universal relations for fiber-reinforced elastic materials. Math. Mech. Solids 7, 95–110 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Saito, T., Furuta, T., Hwang, J.H., Kuramoto, S., Nishino, K., Susuki, N., Chen, R., Yamada, A., Ito, K., Seno, Y. Nonaka, T., Ikehata, H., Nagasako, N., Iwamoto, C., Ikuhara, Y., Sakuma, T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003)

  43. Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1., pp. 239–353. Academic Press, New York (1971)

    Google Scholar 

  44. Spencer A.J.M.: Constitutive theory for strongly anisotropic solids. In: Spencer, A.J.M. (ed.) Continuum Theory of the Mechanics of Fibre-Reinforced Composites, pp. 1–32. Springer, Wien, New York (1984)

    Chapter  Google Scholar 

  45. Talling R.J., Dashwood R.J., Jackson M., Kuramoto S., Dye D.: Determination of C 11C 12 in Ti-36Nb-2Ta-3Zr-0.3O (xt.%) (Gum metal). Scr. Mater. 59, 669–672 (2008)

    Article  Google Scholar 

  46. Truesdell C.A., Toupin R.: The classical field theories. In: Flügge, S. Handbuch der Physik, vol. III/1, Springer, Berlin (1960)

  47. Truesdell, C., Noll, W.: The non-linear field theories of mechanics, 3rd edn. Springer, Berlin (2004)

  48. Withey E., Jim M., Minor A., Kuramoto S., Chrzan D.C., Morris J.W. Jr: The deformation of ‘Gum Metal’ in nanoindentation. Mater. Sci. Eng. A 493, 26–32 (2008)

    Article  Google Scholar 

  49. Zhang S.Q., Li S.J., Jia M.T., Hao Y.L., Yang R.: Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior. Scr. Mater. 60, 733–736 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bustamante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, R., Rajagopal, K.R. Study of a new class of nonlinear inextensible elastic bodies. Z. Angew. Math. Phys. 66, 3663–3677 (2015). https://doi.org/10.1007/s00033-015-0581-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0581-3

Mathematics Subject Classification

Keywords

Navigation