Skip to main content
Log in

Solutions of some boundary value problems for a new class of elastic bodies undergoing small strains. Comparison with the predictions of the classical theory of linearized elasticity: Part I. Problems with cylindrical symmetry

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

There is considerable evidence that shows that for a large class of materials the relationship between the stress and the strain is nonlinear even in the range of strain that is considered small enough for the classical linearized theory of elasticity to be applicable (see Saito et al. in Science 300:464–467, 2003; Li et al. in Phys Rev Lett 98:105503, 2007; Talling et al. in Scr Mater 59:669–672, 2008; Withey et al. in Mater Sci Eng A 493:26–32, 2008; Zhang et al. in Scr Mater 60:733–736, 2009). A proper description of the experiments requires an alternative theory which when linearized would allow the possibility of such a nonlinear relationship between the stress and the strain. Recently, such a theory of elastic bodies has been put into place (see Rajagopal in Appl Math 48:279–319, 2003; Bustamante in Proc R Soc A 465:1377–1392, 2009; Rajagopal in Math Mech Solids 16:536–562, 2011). In this paper, we consider a special class of bodies that belong to the new generalization of response relations for elastic bodies that have a nonlinear relationship between the linearized strain and the stress. We use the special class of bodies that exhibit limited small strain to study two boundary value problems, the first concerning the telescopic shearing and inflation of a tube and the second being the extension, inflation and circumferential shearing of a tube. The results that we obtain for the models under consideration are markedly different from the predictions of the classical linearized elastic model with regard to the same boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saito T., Furuta T., Hwang J.H., Kuramoto S., Nishino K., Susuki N., Chen R., Yamada A., Ito K., Seno Y., Nonaka T., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y., Sakuma T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003)

    Article  Google Scholar 

  2. Li T., Morris J.W. Jr, Nagasako N., Kuramoto S., Chrzan D.C.: ‘Ideal’ engineering alloys. Phys. Rev. Lett. 98, 105503 (2007)

    Article  Google Scholar 

  3. Talling R.J., Dashwood R.J., Jackson M., Kuramoto S., Dye D.: Determination of C 11C 12 in Ti–36Nb–2Ta–3Zr–0.3O (xt.%) (Gum metal). Scr. Mater. 59, 669–672 (2008)

    Article  Google Scholar 

  4. Withey E., Jim M., Minor A., Kuramoto S., Chrzan D.C., Morris J.W. Jr: The deformation of ‘Gum Metal’ in nanoindentation. Mater. Sci. Eng. A 493, 26–32 (2008)

    Article  Google Scholar 

  5. Zhang S.Q., Li S.J., Jia M.T., Hao Y.L., Yang R.: Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior. Scr. Mater. 60, 733–736 (2009)

    Article  Google Scholar 

  6. Rajagopal K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bustamante R.: Some topics on a new class of elastic bodies. Proc. R. Soc. A 465, 1377–1392 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rajagopal K.R.: Conspectus of concepts of elasticity. Math. Mech. Solids 16, 536–562 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Guyer R.A., Johnson P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)

    Article  Google Scholar 

  10. Johnson P.A., Rasolfosaon P.N.J.: Manifestation of nonlinear elasticity in rock: convincing evidence over large frequency and strain intervals from laboratory studies. Nonlinear Process. Geophys. 3, 77–88 (1996)

    Article  Google Scholar 

  11. Lu Z.: Role of hysteresis in propagation acoustic waves in soils. Geophys. Res. Lett. 32, L14302 (2005)

    Google Scholar 

  12. McCall K.R., Guyer R.A.: Equation of state and wave propagation in hysteretic nonlinear elastic materials. J. Geophys. Res. 99, 23887–23897 (1994)

    Article  Google Scholar 

  13. Ostrovsky L.A.: Wave processes in media with strong acoustic nonlinearity. J. Acoust. Soc. Am. 90, 3332–3337 (1991)

    Article  Google Scholar 

  14. Popovics S., Rose J.L., Popovics J.S.: The behavior of ultrasonic pulses in concrete. Cem. Concr. Res. 20, 259–270 (1990)

    Article  Google Scholar 

  15. Rajagopal K.R: The elasticity of elasticity. Z. Angew. Math. Phys. 58, 309–317 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rajagopal, K.R: On the nonlinear elastic response of bodies in the small strain range. Acta Mech. 225, 1545–1553 (2014)

  17. Green, G.: On the laws of reflexion and refraction of light at the common surface of two non-crystallized media. Proc. Camb. Philos. Soc. 7, 1–24 (1838). See also pp. 245–269 of Mathematical papers of the late George Green, Ed. N. M. Ferris, MacMillan and Company, London (1871)

  18. Green, G.: On the propagation of light in crystallized media. Trans. Camb. Philos. Soc. 7, 121-140 (1839-1842). See also pp. 293–311 of Mathematical papers of the late George Green, Ed. N. M. Ferris, MacMillan and Company, London (1871)

  19. Carroll M.M.: Must elastic materials be hyperelastic?. Math. Mech. Solids 14, 369–376 (2005)

    Article  Google Scholar 

  20. Truesdell, C.A., Noll, W.: The non-linear field theories of mechanics. In: Antman, S.S. (ed.), 3rd edn. Springer, Berlin (2004)

  21. Rajagopal K.R, Srinivasa A.R.: On the response of non-dissipative solids. Proc. R. Soc. A 463, 357–367 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rajagopal K.R, Srinivasa A.R.: On a class of non-dissipative solids that are not hyperelastic. Proc. R. Soc. A 465, 493–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bridges, C., Rajagopal, K.R.: Implicit constitutive models with a thermodynamic basis: a study of stress concentration. Z. Angew. Math. Phys. doi:10.1007/s00033-014-0398-5

  24. Bustamante R., Rajagopal K.R.: A note on plain strain and stress problems for a new class of elastic bodies. Math. Mech. Solids 15, 229–238 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bustamante R., Rajagopal K.R.: Solutions of some simple boundary value problems within the context of a new class of elastic materials. Int. J. Nonlinear Mech. 46, 376–386 (2011)

    Article  Google Scholar 

  26. Bustamante, R., Rajagopal, K.R.: On the inhomogeneous shearing of a new class of elastic bodies, Math. Mech. Solids 17, 762–778 (2012). doi:10.1177/1081286511429994

  27. Rajagopal K.R: On a new class of models in elasticity. Math. Comput. Appl. 15, 506–528 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Freed, A.D.: Soft Solids: A Primer to the Theoretical Mechanics of Materials. Birkhäuser (2014)

  29. Rajagopal K.R., Walton J.R.: Modeling fracture in the context of strain-limiting theory of elasticity: a single anti-plane crack. Int. J. Fract. 169, 39–48 (2011)

    Article  MATH  Google Scholar 

  30. Gou, K., Muddamallappa, M., Rajagopal, K.R., Walton, J.R.: Modeling fracture in the context of a strain limiting theory in elasticity: a single plane-strain crack. Int. J. Eng. Sci. doi:10.1016/j.ijengsci.2014.04.018

  31. Ortiz, A., Bustamante, R., Rajagopal, K.R.: A numerical study of a plate with a hole for a new class of elastic bodies. Acta Mech. 223, 1971–1981 (2012). doi:10.1007/s00707-012-0690-4

  32. Ortiz-Bernardin, A., Bustamante, R., Rajagopal, K.R.: A numerical study of elastic bodies that are described by constitutive equations that exhibit limited strains. Int. J. Solids Struct. 51, 875–885 (2014)

  33. Kulvait V., Malek J., Rajagopal K.R.: Anti-plane stress state of a plate with a V-notch for a new class of elastic solids. Int. J. Fract. 179, 59–73 (2013)

    Article  Google Scholar 

  34. Kannan, K., Rajagopal, K.R., Saccomandi, G.: Unsteady motions of a new class of elastic solids. Wave Motion 51, 833–843 (2014)

  35. Kambapalli, M., Kannan, K., Rajagopal, K.R.: Circumferential stress waves in a nonlinear elastic cylinder. Q. J. Mech. Appl. Math. 67, 193–203 (2014). doi:10.1093/qjmam/hbu003

  36. Bustamante, R., Sfyris, D.: Direct determination of stresses from the stress wave equations of motion and wave propagation for a new class of elastic bodies. Math. Mech. Solids 20, 80–91 (2015). doi:10.1177/1081286514543600

  37. Freed A.D., Einstein D.R.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013)

    Article  MathSciNet  Google Scholar 

  38. Criscione J.C., Rajagopal K.R.: On the modeling of the non-linear response of soft elastic bodies. Int. J. Nonlinear Mech. 56, 20–24 (2013)

    Article  Google Scholar 

  39. Penn R.W.: Volume changes accompanying the extension of rubber. J. Rheol. 14, 509–517 (1970)

    Article  Google Scholar 

  40. Bustamante R., Rajagopal K.R.: On a new class of electroelastic bodies: part I. Proc. R. Soc. A 469, 20120521 (2013)

    Article  MathSciNet  Google Scholar 

  41. Bustamante R., Rajagopal K.R.: On a new class of electroelastic bodies: part II. Boundary value problems. Proc. R. Soc. A 469, 20130106 (2013)

    Article  MathSciNet  Google Scholar 

  42. Chadwick P.: Continuum Mechanics: Consice Theory and Problems. Dover Publications INC, Mineola New York (1999)

    Google Scholar 

  43. Truesdell, C.A., Toupin, R. (1960) The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, Vol. III/1. Springer, Berlin

  44. Saada A.S.: Elasticity: theory and application. Krieger Publishing Company, Malabar Florida (1993)

    Google Scholar 

  45. Rajagopal, K.R: A note on material symmetry for bodies defined by implicit constitutive relations. (Submitted)

  46. Karra S., Rajagopal K.R.: Development of three dimensional constitutive theories based on lower dimensional data. Appl. Math. 54, 147–176 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. Rajagopal, K.R, Srinivasa, A.R.: On the use of compatibility equations for the strain in linear and non-linear theories of mechanics. Math. Mech. Solids. doi:10.1177/1081286513509506

  48. Lamé, M.G.: Leşons sur la Théorie Mathématique de L’Élasticité des Corps Solides. Deuxième Édition, Paris, Gauthier-Villars (1866)

  49. Comsol Multiphysics, Version 3.4, Comsol Inc. Palo Alto, CA, (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bustamante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, R., Rajagopal, K.R. Solutions of some boundary value problems for a new class of elastic bodies undergoing small strains. Comparison with the predictions of the classical theory of linearized elasticity: Part I. Problems with cylindrical symmetry. Acta Mech 226, 1815–1838 (2015). https://doi.org/10.1007/s00707-014-1293-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1293-z

Keywords

Navigation