Skip to main content
Log in

A class of transversely isotropic non-linear elastic bodies that is not Green elastic

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

An implicit constitutive relation is proposed to study transversely isotropic bodies. The relation is obtained assuming the existence of a Gibbs potential that depends on the second Piola–Kirchhoff stress tensor, from which the Green Saint-Venant strain tensor is obtained as the derivative with respect to the stress. The responses of unconstrained as well as inextensible bodies are studied, and some boundary value problems are analysed. An inextensible body, where the constraint of inextensibility appears only in tension is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In several such works, exact solutions have been found for isotropic bodies that are inextensible in a specific direction [16], or else for bodies that are incompressible and inextensible in a specific direction [10].

References

  1. Rajagopal KR (2003) On implicit constitutive theories. Appl Math 48:279–319

    Article  MathSciNet  Google Scholar 

  2. Rajagopal KR (2007) The elasticity of elasticity. Z Angew Math Phys 58:309–317

    Article  MathSciNet  Google Scholar 

  3. Rajagopal KR (2011) Conspectus of concepts of elasticity. Math Mech Solids 16:536–562

    Article  MathSciNet  Google Scholar 

  4. Truesdell CA, Noll W (2004) In: Antman SS (ed) The non-linear field theories of mechanics, 3rd edn. Springer, Berlin

  5. Rajagopal KR, Srinivasa AR (2007) On the response of non-dissipative solids. Proc R Soc A 463:357–367

    Article  MathSciNet  Google Scholar 

  6. Rajagopal KR, Srinivasa AR (2009) On a class of non-dissipative solids that are not hyperelastic. Proc R Soc A 465:493–500

    Article  Google Scholar 

  7. Spencer AJM (1972) Deformations of fibre-reinforced materials. Oxford University Press, London

    MATH  Google Scholar 

  8. Spencer AJM (1984) Constitutive theory for strongly anisotropic solids. In: Spencer AJM (ed) Continuum theory of the mechanics of fibre-reinforced composites. Springer, New York, pp 1–32

    Chapter  Google Scholar 

  9. Pipkin AC (1974) Finite deformations of ideal fibre-reinforced composites. In: Sendeokyi GP (ed) Composite materials, vol 2. Academic Press, New York

    Google Scholar 

  10. Rogers TG (1984) Finite deformation and stress in idea fibre-reinforced materials. In: Spencer AJM (ed) Continuum theory of the mechanics of fibre-reinforced composites. Springer, New York, pp 33–72

    Chapter  Google Scholar 

  11. Adkins JE, Rivlin RS (1955) Large elastic deformations of isotropic materials X. Reinforcement by intextensible cords. Proc R Soc A 248:201–223. Also see Barenblatt GI, Joseph DD (eds.) (1997) Collected papers of R.S. Rivlin, Springer Verlag, New York Inc., pp. 488–510

  12. Truesdell CA, Toupin R (1960) The classical field theories. In: Flügge S (ed) Handbuch der Physik, vol III/1. Springer, Berlin

    Google Scholar 

  13. Spencer AJM (1971) Theory of invariants. In: Eringen AC (ed) Continuum physics, vol 1. Academic Press, New York, pp 239–353

    Google Scholar 

  14. Bustamante R, Rajagopal KR (2015) Study of a new class of non-linear inextensible elastic bodies. Z Angew Math Phys 66:3663–3677

    Article  MathSciNet  Google Scholar 

  15. John F (1975) Partial differential equations. Springer, New York

    Book  Google Scholar 

  16. Beskos DE (1972) Universal solutions for fiber-reinforced compressible, isotropic elastic materials. J Elast 2:153–168

    Article  Google Scholar 

  17. Beatty MF (1978) General solutions in the equilibrium theory of inextensible elastic materials. Acta Mech 29:119–126

    Article  MathSciNet  Google Scholar 

  18. Pipkin AC (1975) Finite axisymmetric deformation of ideal fibre-reinforced composites. Q J Mech Appl Math 28:271–284

    Article  Google Scholar 

  19. Kassianidis F, Ogden RW, Merodio J, Pence TJ (2008) Azimuthal shear of a transversely isotropic elastic solid. Math Mech Solids 13:690–724

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

K. R. Rajagopal thanks the National Science Foundation and the Office of Naval Research for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bustamante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A generalization of the problem of biaxial extension/compression and shear of a slab

Appendix: A generalization of the problem of biaxial extension/compression and shear of a slab

For the problem of the biaxial extension/compression and shear of a slab described in Sect. 5.1, the following deformation that is more general than (34) is also possible for the stress given by (32):

$$\begin{aligned} x_1=\lambda _1 X_1+\kappa _1 X_2,\quad x_2=\lambda _2 X_2+\kappa _2 X_1,\quad x_3=\lambda _3X_3, \end{aligned}$$
(131)

where \(\lambda _i\), \(i=1,2,3\), and \(\kappa _1\), \(\kappa _2\) are constants. The deformation gradient is

$$\begin{aligned} \mathbf {F}=\sum _{i=1}^3\lambda _i\mathbf {e}_i\otimes \mathbf {E}_i+\kappa _1\mathbf {e}_1\otimes \mathbf {E}_2+\kappa _2\mathbf {e}_2\otimes \mathbf {E}_1, \end{aligned}$$
(132)

from which we can obtain \(J=(\lambda _1\lambda _2-\kappa _1\kappa _2)\lambda _3\) and

$$\begin{aligned} \mathbf {E}= & {} \frac{1}{2}\left[ \big (\lambda _1^2+\kappa _2^2-1\big )\mathbf {E}_1\otimes \mathbf {E}_1+\big (\lambda _2^2+\kappa _1^2-1\big )\mathbf {E}_2\otimes \mathbf {E}_2+\big (\lambda _3^2-1\big )\mathbf {E}_3\otimes \mathbf {E}_3\right. \nonumber \\&\left. +\left( \kappa _1\lambda _2+\kappa _2\lambda _2\right) \left( \mathbf {E}_1\otimes \mathbf {E}_2+\mathbf {E}_2\otimes \mathbf {E}_1\right) \right] . \end{aligned}$$
(133)

From (3) and (32) and using the above expression for J we obtain for the non-zero components of the second Piola–Kirchhoff stress tensor

$$\begin{aligned} S_{11}=\frac{\lambda _3\left( \lambda _2^2\sigma _1+\kappa _1^2\sigma _2\right) }{\left( \lambda _1\lambda _2-\kappa _1\kappa _2\right) },\quad S_{12}=\frac{\lambda _3\left( \kappa _2\lambda _2\sigma _1+\kappa _1\lambda _1\sigma _2\right) }{\left( \kappa _1\kappa _2-\lambda _1\lambda _2\right) },\quad S_{22}=-\frac{\lambda _3\left( \kappa _2^2\sigma _1+\lambda _1^2\sigma _2\right) }{\left( \kappa _1\kappa _2-\lambda _1\lambda _2\right) }. \end{aligned}$$
(134)

The above expressions for \(\mathbf {S}\), \(\mathbf {E}\) and \(\mathbf {a}_0\) (that is given in (33)) can be replaced in (6) obtaining implicit relations for unconstrained solids that are more general than (38)–(41).

In the case of an inextensible slab using (133) and (33) in (9) we obtain (compare with (54))

$$\begin{aligned} 2cs\left( \kappa _1\lambda _1+\kappa _2\lambda _2\right) +c^2\big (\lambda _1^2-1+\kappa _2^2\big )+s^2\big (\lambda _2^2-1+\kappa _1^2\big )=0, \end{aligned}$$
(135)

and the non-zero components of \(\mathbf {S}_\mathrm {a}\) from (134) considering (15) are

$$\begin{aligned} S_{\mathrm {a}_{11}}= & {} -\frac{c^2}{2}\left[ c^2\big (\kappa _2^2+\lambda _1^2-1\big )+2cs\left( \kappa _1\lambda _1+\kappa _2\lambda _2\right) +s^2\big (\kappa _1^2+\lambda _2^2-1\big )\right] +\frac{\lambda _3\left( \lambda _2^2\sigma _1+\kappa _1^2\sigma _2\right) }{\left( \lambda _1\lambda _2-\kappa _1\kappa _2\right) }, \end{aligned}$$
(136)
$$\begin{aligned} S_{\mathrm {a}_{22}}= & {} -\frac{s^2}{2}\left[ c^2\big (\kappa _2^2+\lambda _1^2-1\big )+2cs\left( \kappa _1\lambda _1+\kappa _2\lambda _2\right) +s^2\big (\kappa _1^2+\lambda _2^2-1\big )\right] +\frac{\lambda _3\left( \lambda _1^2\sigma _2+\kappa _2^2\sigma _1\right) }{\left( \lambda _1\lambda _2-\kappa _1\kappa _2\right) }, \end{aligned}$$
(137)
$$\begin{aligned} S_{\mathrm {a}_{12}}= & {} -\frac{cs}{2}\left[ c^2\big (\kappa _2^2+\lambda _1^2-1\big )+2cs\left( \kappa _1\lambda _1+\kappa _2\lambda _2\right) +s^2\big (\kappa _1^2+\lambda _2^2-1\big )\right] +\frac{\lambda _3\left( \kappa _2\lambda _2\sigma _1+\kappa _1\lambda _1\sigma _2\right) }{\left( \kappa _1\kappa _2-\lambda _1\lambda _2\right) }. \end{aligned}$$
(138)

These expressions for the components of \(\mathbf {S}_\mathrm {a}\) and (133) must be used in (26) to obtain a generalization of (50)–(53).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, R., Rajagopal, K.R. A class of transversely isotropic non-linear elastic bodies that is not Green elastic. J Eng Math 127, 2 (2021). https://doi.org/10.1007/s10665-021-10094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10094-7

Keywords

Navigation