Skip to main content
Log in

Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with the boundedness of global solutions to the quasilinear Keller–Segel system

$$\left\{\begin{array}{ll}u_t=\nabla\cdot\big(D(u)\nabla u-u\nabla v\big), &\quad x\in\Omega,\,\, t>0,\\ v_t=\Delta v-uf(v),&\quad x\in\Omega, \,\,t>0,\\ \nabla u\cdot \nu=0,\,\, \nabla v\cdot\nu=0,&\quad x\in \partial\Omega,\,\, t>0\end{array}\right.$$

in a bounded domain \({\Omega\subset \mathbb{R}^{n}(n\geq 3)}\) with smooth boundary, where D(u) is supposed to satisfy D(u) ≥ D 0 u m-1 with some positive constant D 0. It is proved that when \({m>2-\frac{n+2}{2n}}\), the system possesses global bounded weak solutions for any sufficiently smooth nonnegative initial data. In particular, we improved the recent result by Wang et al. (Z Angew Math Phys, 2015. doi:10.1007/s00033-014-0491-9) in the sense that we established the global boundedness of weak solutions. We also removed the convexity assumption on the domain used by Wang et al. (Z Angew Math Phys 65:1137–1152, 2014, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chae M., Kang K., Lee J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. A 33, 2271–2297 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chae M., Kang K., Lee J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Difrancesco M., Lorz A., Markowich P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. A 28, 1437–1453 (2010)

    Article  MathSciNet  Google Scholar 

  4. Duan R., Lorz A., Markowich P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duan R., Xiang Z.: A note on global existence for the chemotaxis Stokes model with nonlinear diffusion. Int. Math. Res. Not. 2014, 1833–1852 (2014)

    MathSciNet  Google Scholar 

  6. Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math. Verien 105, 103–165 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch. Math. Verien 106, 51–69 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Hillen T., Painter K.: A users guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Herrero M.A., Velázquez J.L.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Super. Pisa Cl. Sci. 24, 633–683 (1997)

    MATH  Google Scholar 

  10. Horstmann D., Winkler M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ishida S., Seki K., Yokota T.: Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    Article  MATH  Google Scholar 

  13. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  14. Li X., Xiang Z.: Boundedness in quasilinear Keller–Segel equations with nonlinear sensitivity and logistic source. Discrete Contin. Dyn. Syst. A 35, 3503–3531 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li T., Suen A., Winkler M., Xue C.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Models Methods Appl. Sci. 25, 721–746 (2015)

    Article  MathSciNet  Google Scholar 

  16. Liu J., Lorz A.: A coupled chemotaxis-fluid model: global existence. Ann. I. H. Poincaré Anal. 28, 643–652 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lorz A.: Coupled chemotaxis fluid equations. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nagai T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MATH  MathSciNet  Google Scholar 

  19. Mizoguchi, N., Winkler, M.: Is aggregation a generic phenomenon in the two dimensional Keller–Segel system?. Preprint

  20. Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj Ser. Int. 40, 411–433 (1997)

    MATH  MathSciNet  Google Scholar 

  21. Osaki K., Yagi A.: Finite dimensional attractors for one-dimensional Keller–Segel equations. Funkcial. Ekvacioj 44, 441–469 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Tuval I., Cisneros L., Dombrowski C., Wolgemuth C.W., Kessler J.O., Goldstein R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  23. Tao Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381, 521–529 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tao Y., Winkler M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tao Y., Winkler M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. I. H. Poincaré Anal. 30, 157–178 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tao Y., Winkler M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. A 32, 1901–1914 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tao Y., Winkler M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vorotnikov D.: Weak solutions for a bioconvection model related to Bacillus subtilis. Commun. Math. Sci. 12, 545–563 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang L., Mu C., Zhou S.: Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion. Z. Angew. Math. Phys. 65, 1137–1152 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, L., Mu, C., Lin, K., Zhao, J.: Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant. Z. Angew. Math. Phys. (2015). doi:10.1007/s00033-014-0491-9

  31. Winkler M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MATH  Google Scholar 

  32. Winkler M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  33. Winkler M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MATH  Google Scholar 

  34. Winkler, M.: A two-dimensional chemotaxis-Stokes system with rotational flux: global solvability, eventual smoothness and stabilization. Preprint

  35. Winkler M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. I. H. Poincaré Anal. (2015). doi:10.1016/j.anihpc.2015.05.002

  36. Winkler M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. arXiv:1501.07059v1

  37. Winkler M.: How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Tran. Am. Math. Soc. (2015). doi:10.1090/tran/6733

  38. Zhang Q., Zheng X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier–Stokes equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyin Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xiang, Z. Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system. Z. Angew. Math. Phys. 66, 3159–3179 (2015). https://doi.org/10.1007/s00033-015-0557-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0557-3

Mathematics Subject Classification

Keywords

Navigation