Skip to main content
Log in

On slow flows of the full nonlinear Doi–Edwards polymer model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The full Doi–Edwards model constitutive equation derived by Palierne (Phys Rev Lett 93:136001-1–136001-4, (2004) is discussed in detail. The corresponding configurational probability equation is next solved for slow flows, and the solution is used to calculate the material constants: zero-shear viscosity and the normal stress differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird R.B., Armstrong R.C., Hassager O.: Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics. Wiley, New-York (1987)

    Google Scholar 

  2. Bird R.B., Armstrong R.C., Hassager O.: Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theories. Wiley, New-York (1987)

    Google Scholar 

  3. Ciuperca I.S., Heibig A., Palade L.I.: Existence and uniqueness results for the Doi–Edwards polymer model: the case of the (full) nonlinear configurational probability density equation. Nonlinearity 25, 991–1009 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cleja-Ţigoiu, S., Ţigoiu, V.: Rheology and Thermodynamics, Part I—Rheology, Editura Universită ţii din Bucureşti (1998)

  5. de~Gennes P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, London (1979)

    Google Scholar 

  6. Doi M., Edwards S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (1989)

    Google Scholar 

  7. Huilgol R.R., Phan-Thien N.: Fluid Mechanics of Viscoelasticity. Elsevier, Amsterdam (1997)

    Google Scholar 

  8. Keunings, R.: Micro-micro methods for the multi-scale simulation of viscoelastic flow using molecular models of kinetic theory. Rheol. Rev. 67–98 (2004); The British Society of Rheology

  9. Kirkwood, J.G.: In: Auer, P.L. (ed.) Macromolecules. Gordon and Breach, New York (1968)

  10. Larson R.G.: Constitutive Equations for Polymer Melts and Solutions. Butterworths, London (1988)

    Google Scholar 

  11. Lin Y.H.: Polymer Viscoelasticity: Basics, Molecular Theories and Experiments. World Scientific, Singapore (2003)

    Book  Google Scholar 

  12. Lodge T.P., Rotstein N.A., Praeger S.: Dynamics of entangled polymer liquids: do linear chains reptate?. Adv. Chem. Phys. LXXIX, 1–132 (1990)

    Google Scholar 

  13. Marrucci G., Grizzuti N.: The free energy function of the Doi–Edwards theory: analysis of the instabilities in stress relaxation. J. Rheol. 27(5), 433–450 (1983)

    Article  Google Scholar 

  14. Marrucci G., Ianniruberto G.: Open problems in tube models for concentrated polymers. J. Non-Newtonian Fluid Mech. 82, 275–286 (1999)

    Article  MATH  Google Scholar 

  15. McLeish T.C.B.: Tube theory of entangled polymer dynamics. Adv. Phys. 51(6), 1379–1527 (2002)

    Article  Google Scholar 

  16. Morrison F.A.: Understanding Rheology. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  17. Öttinger H.C.: Beyond Equilibrium Thermodynamics. Wiley, New York (2006)

    Google Scholar 

  18. Palierne J.F.: Rheothermodynamics of the Doi–Edwards reptation model. Phys. Rev. Lett. 93, 136001-1–136001-4 (2004)

    Article  Google Scholar 

  19. Picu C.R., Sarvestani A.S., Palade L.I.: Molecular constitutive model for entangled polymer nanocomposites. Mater. Plast. 49(3), 133–142 (2012)

    Google Scholar 

  20. Pivato M.: Linear Partial Differential Equations and Fourier Theory. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  21. Renardy M.: Mathematical Analysis of Viscoelastic Flows. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  22. Wilson H.J.: Open mathematical problems regarding non-Newtonian fluids. Nonlinearity 25, R45–R51 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Iulian Palade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palade, L.I. On slow flows of the full nonlinear Doi–Edwards polymer model. Z. Angew. Math. Phys. 65, 139–148 (2014). https://doi.org/10.1007/s00033-013-0358-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0358-5

Mathematics Subject Classification

Keywords

Navigation