Skip to main content
Log in

Mathematical Existence Results for the Doi–Edwards Polymer Model

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we present some mathematical results on the Doi–Edwards model describing the dynamics of flexible polymers in melts and concentrated solutions. This model, developed in the late 1970s, has been used and extensively tested in modeling and simulation of polymer flows. From a mathematical point of view, the Doi–Edwards model consists in a strong coupling between the Navier–Stokes equations and a highly nonlinear constitutive law. The aim of this article is to provide a rigorous proof of the well-posedness of the Doi–Edwards model, namely that it has a unique regular solution. We also prove, which is generally much more difficult for flows of viscoelastic type, that the solution is global in time in the two dimensional case, without any restriction on the smallness of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackwell, R.J., McLeish, T.C.B., Harlen, O.G.: Molecular drag-strain coupling in branched polymer melts. J. Rheol. 44(1), 121–136 (2000)

  2. Chupin, L.: Existence results for the flow of viscoelastic fluids with an integral constitutive law. J. Math. Fluid Mech. 15(4), 783–806 (2013)

  3. Chupin L.: Global existence results for some viscoelastic models with an integral constitutive law. SIAM J. Math. Anal. 46(3), 1859–1873 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ciuperca I.S., Heibig A., Iulian Palade L.: Existence and uniqueness results for the Doi–Edwards polymer melt model: the case of the (full) nonlinear configurational probability density equation. Nonlinearity 25(4), 991–1009 (2012)

  5. Coleman, B.D., Mizel, V.J.: A general theory of dissipation inmaterials with memory. Arch. Ration Mech. Anal. 27(4), 255–274 (1967)

  6. Constantin P., Masmoudi N.: Global well-posedness for a Smoluchowski equation coupled with Navier–Stokes equations in 2D. Commun. Math. Phys. 278(1), 179–191 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Constantin P., Seregin G.: Global regularity of solutions of coupled Navier–Stokes equations and nonlinear Fokker Planck equations. Discrete Contin. Dyn. Syst. 26(4), 1185–1196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Currie P.K.: Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss–Bird kinetic theory models. J. Non-Newton. Fluid Mech. 11, 53–68 (1982)

    Article  MATH  Google Scholar 

  9. Danchin R.: Density-dependent incompressible fluids in bounded domains. J. Math. Fluid Mech. 8(3), 333–381 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Doi M.: A constitutive equation derived from the model of Doi and Edwards for concentrated polymer solutions and polymer melts. J. Polym. Sci. Polym. Phys. Ed. 18, 2055–2067 (1980)

    Article  ADS  Google Scholar 

  11. Doi, M., Edwards, S.F. Dynamics of concentrated polymer systems. Part 1—Brownian motion in the equilibrium state. J. Chem. Soc. Faraday Trans. 2 74, 1789 (1978)

  12. Doi, M., Edwards, S.F. Dynamics of concentrated polymer systems. Part 2—molecular motion under flow. J. Chem. Soc. Faraday Trans. 2 74, 1802 (1978)

  13. Doi, M., Edwards, S.F.: Dynamics of concentrated polymer systems. Part 3—the constitutive equation. J. Chem. Soc. Faraday Trans. 2 74, 1818 (1978)

  14. Doi, M., Edwards, S.F.: Dynamics of concentrated polymer systems. Part 4—rheological properties. J. Chem. Soc. Faraday Trans. 2 75, 38 (1978)

  15. Doi M., Edwards S.F.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (1988)

    Google Scholar 

  16. Fernández-Cara E., Guillén F., Ortega R.R.: Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1(26), 1–29 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Giga Y., Sohr H.: Abstract L p estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102(1), 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guillopé C., Saut J.C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15(9), 849–869 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hassager, O.: Do polymers really climb rods? J. Rheol. 29, 361–364 (1985)

  20. Heibig A.: Some properties of the Doi–Edwards and K-BKZ equations and operators. Nonlinear Anal. 109, 268–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu D., Lelièvre T.: New entropy estimates for Oldroyd-B and related models. Commun. Math. Sci. 5(4), 909–916 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hulsen M.A., Peters E.A.J.F., van den Brule B.H.A.A.: A new approach to the deformation fields method for solving complex flows using integral constitutive equations. J. Non-Newton. Fluid Mech. 98, 201–221 (2001)

    Article  MATH  Google Scholar 

  23. Keunings, R.: Finite element methods for integral viscoelastic fluids. In: Binding, D.M., Walters, K. (eds.) Rheology Reviews 2003. British Society of Rheology, pp. 167–195 (2003)

  24. Larson R.G.: Constitutive Equations for Polymer Melts and Solutions. Butterworths, Boston (1988)

    Google Scholar 

  25. Lin, Y.H.: Polymer Viscoelasticity: Basics, Molecular Theories, and Experiments. World Scientific Pub Co Inc., Hackensack, 2004

  26. Lions P.L., Masmoudi N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math. Ser. B 21(2), 131–146 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Marrucci G., Grizzutti N.: Fast flows of concentrated polymers—predictions of the tube model on chain stretching. Gazz. Chim. Ital. 118, 179–185 (1988)

    Google Scholar 

  28. Marrucci G., Ianniruberto G.: Open problems in tube models for concentrated polymers. J. Non-Newton. Fluid Mech. 82(2–3), 275–286 (1999)

    Article  MATH  Google Scholar 

  29. Masmoudi N.: Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math. 191(2), 427–500 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. McLeish T.C.B., Larson R.G.: Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J. Rheol. 110, 42–81 (1998)

    Google Scholar 

  31. Simon J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tomé M.F., de Araujo M.S.B., Alves M.A., Alves M.A., Alves M.A.: Numerical simulation of viscoelastic flows using integral constitutive equations: a finite difference approach. J. Comput. Phys. 227(8), 4207–4243 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Chupin.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chupin, L. Mathematical Existence Results for the Doi–Edwards Polymer Model. Arch Rational Mech Anal 223, 1–55 (2017). https://doi.org/10.1007/s00205-016-1030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1030-y

Navigation