Skip to main content

Advertisement

SpringerLink
An Optimal Bound for Nonlinear Eigenvalues and Torsional Rigidity on Domains with Holes
Download PDF
Download PDF
  • Open Access
  • Published: 03 September 2020

An Optimal Bound for Nonlinear Eigenvalues and Torsional Rigidity on Domains with Holes

  • Francesco Della Pietra1 &
  • Gianpaolo Piscitelli2 

Milan Journal of Mathematics volume 88, pages 373–384 (2020)Cite this article

  • 281 Accesses

  • 3 Citations

  • Metrics details

Abstract

In this paper we prove an optimal upper bound for the first eigenvalue of a Robin-Neumann boundary value problem for the p-Laplacian operator in domains with convex holes. An analogous estimate is obtained for the corresponding torsional rigidity problem.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A. Alvino, C. Nitsch, C. Trombetti, A Talenti comparison result for solutions to elliptic problems with Robin boundary conditions, ArXiv (2019)

  2. Antunes, P.R., Freitas, P., Krejćiŕík, D.: Bounds and extremal domains for Robin eigenvalues with negative boundary parameter. Adv. Calc. Var. 10, 357–379 (2017)

    Article  MathSciNet  Google Scholar 

  3. M.H. Bossel, Membranes élastiquement liées: extension du theoreme de Rayleigh-Faber-Krahn t de l'inegalité de Cheeger, C.R. Acad. Sci. Paris Sér. I Math. 302 (1986), 47–50

  4. Bucur, D., Buttazzo, G., Nitsch, C.: Symmetry breaking for a problem in optimal insulation. J. Math. Pures Appl. 107, 451–463 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bucur, D., Daners, D.: An alternative approach to the Faber-Krahn inequality for Robin problems. Calc. Var. Partial Differential Equations 37, 37–75 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bucur, D., Ferone, V., Nitsch, C., Trombetti, C.: A sharp estimate for the first Robin- Laplacian eigenvalue with negative boundary parameter, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30, 665–676 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bucur, D., Giacomini, A.: The Saint-Venant inequality for the Laplace operator with Robin boundary conditions. Milan J. Math. 83, 327–343 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dai, Q., Fu, Y.: Faber-Krahn inequality for Robin problems involving p-Laplacian. Acta Math. Appl. Sin. Engl. Ser. 27, 13–28 (2011)

    Article  MathSciNet  Google Scholar 

  9. Daners, D.: A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335, 767–785 (2006)

    Article  MathSciNet  Google Scholar 

  10. F. Della Pietra, N. Gavitone, Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions, Potential Anal. 41 (2014), 1147–1166

  11. F. Della Pietra, N. Gavitone, H. Kovaŕík, Optimizing the first eigenvalue of some quasilinear operators with respect to the boundary conditions, ESAIM Control Optim. Calc. Var. 23 (2017), 1381–1395

  12. F. Della Pietra, N. Gavitone, G. Piscitelli, A sharp weighted anisotropic Poincaré inequality for convex domains, C.R. Acad. Sci. Paris 355 (2017), 748–752

  13. F. Della Pietra, C. Nitsch, R. Scala, C. Trombetti, An optimization problem in thermal insulation with Robin boundary conditions, preprint, ArXiv (2020), https://arxiv.org/abs/2008.02193

  14. F. Della Pietra, C. Nitsch, C. Trombetti, An optimal insulation problem, Math. Ann. (2020),https://doi.org/10.1007/s00208-020-02058-6

  15. Freitas, P., Krejćiŕík, D.: The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280, 322–339 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gavitone, N., Trani, L.: On the First Robin Eigenvalue of a Class of Anisotropic Operators. Milan J. Math. 86, 201–223 (2018)

    Article  MathSciNet  Google Scholar 

  17. Henrot, A.: Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics, Birkhäuser, Basel (2006)

    Book  Google Scholar 

  18. J. Hersch, Contribution to the method of interior parallels applied to vibrating membranes, in: Studies in Mathematical Analysis and Related Topics, Stanford University Press, 1962, pp. 132–139

  19. G. Leoni, A first course in Sobolev spaces, 2nd ed., Graduate Studies in Mathematics, vol. 181, American Mathematical Society, Providence, RI, 2017

  20. G. Paoli, G. Piscitelli, L. Trani, textitSharp estimates for the first p-Laplacian eigenvalue and for the p-torsional rigidity on convex sets with holes. ArXiv (2019)

  21. Paoli, G., Trani, L.: Two estimates for the first Robin eigenvalue of the Finsler Laplacian with negative boundary parameter. J. Optim. Theory Appl. 181, 743–757 (2019)

    Article  MathSciNet  Google Scholar 

  22. Payne, L.E., Weinberger, H.F.: Some isoperimetric inequalities for membrane frequencies and torsional rigidity. J. Math. Anal. Appl. 2, 210–216 (1961)

    Article  MathSciNet  Google Scholar 

  23. R. Schneider, Convex bodies: the Brunn-Minkowski theory. Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014

Download references

Acknowledgements

This work has been partially supported by a MIUR-PRIN 2017 grant “Qualitative and quantitative aspects of nonlinear PDE’s” and by GNAMPA of INdAM. The second author (G.P.) was also supported by Progetto di eccellenza “Sistemi distribuiti intelligenti”of Dipartimento di Ingegneria Elettrica e dell’Informazione “M. Scarano”.

Funding

Open access funding provided by Universit`a degli Studi di Napoli Federico II within the CRUI-CARE Agreement.

Author information

Authors and Affiliations

  1. Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli studi di Napoli Federico II, Via Cintia, Monte S. Angelo, 80126, Napoli, Italy

    Francesco Della Pietra

  2. Dipartimento di Ingegneria Elettrica e dell’Informazione “M. Scarano”, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio n. 43, 03043, Cassino (FR), Italy

    Gianpaolo Piscitelli

Authors
  1. Francesco Della Pietra
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gianpaolo Piscitelli
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Francesco Della Pietra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pietra, F.D., Piscitelli, G. An Optimal Bound for Nonlinear Eigenvalues and Torsional Rigidity on Domains with Holes. Milan J. Math. 88, 373–384 (2020). https://doi.org/10.1007/s00032-020-00320-9

Download citation

  • Received: 22 June 2020

  • Accepted: 31 July 2020

  • Published: 03 September 2020

  • Issue Date: December 2020

  • DOI: https://doi.org/10.1007/s00032-020-00320-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification (2010)

  • 35P15
  • 47J30
  • 35J92
  • 35J25

Keywords

  • Nonlinear eigenvalue problems
  • torsional rigidity
  • mixed boundary conditions
  • optimal estimates
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.