Skip to main content
Log in

Analytical Issues in the Construction of Self-dual Chern–Simons Vortices

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this note we discuss the solvability of Liouville-type systems in presence of singular sources, which arise from the study of non-abelian Chern Simons vortices in Gauge Field Theory and their asymptotic behaviour (for limiting values of the physical parameters). This investigation has contributed towards the understanding of singular PDE ’s in Mean Field form, in connection to surfaces with conical singularities, sharp Moser–Trudinger and log(HLS)-inequalities, bubbling phenomena and point-wise profile estimates in terms of Harnack type inequalities. We shall emphasise mostly the physical impact of the rigorous mathematical results established and mention several of the remaining open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrikosov A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1182 (1957)

    Google Scholar 

  2. O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, \({\mathcal{N}}\) = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals, J. High Energy Phys. 10 (2008) 091.

  3. Ao W., Lin C.-S., Wei J.: On non-topological solutions of the A2 and B2 Chern–Simons system. Memoirs of American Mathematical Society 239, 1132 (2016)

    Article  MathSciNet  Google Scholar 

  4. W. Ao, C.-S. Lin, and J.C. Wei, On non-topological solutions of the G 2 Chern–Simons system, Commun. Analysis and Geometry, 2016, to appear.

  5. T. Aubin, Nonlinear Analysis on Manifolds: Monge–Ampére Equations, Springer, Berlin and New York, 1982.

  6. Bartolucci D., Tarantello G.: Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory. Commun. Math. Phys. 229, 3–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartolucci D., Lin C.-S., Tarantello G.: Uniqueness and symmetry results for solutions of a mean field equation on S 2 via a new bubbling phenomenon. Commun. Pure Appl. Math. 64, 1677–1730 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Battaglia L., Jevnikar A., Malchiodi A., Ruiz D.: A general existence result for the Toda system on compact surfaces. Adv. Math. 285, 937–979 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Battaglia L., Malchiodi A.: Existence and non-existence results for the SU(3) singular Toda system on compact surfaces. J. Funct. Anal. 270, 3750–3807 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Brezis and F. Merle, Uniform estimates and blow-up behaviour for solutions of −ΔuV (x)e u in two dimensions, Comm. Partial Differential Equations 16 (1991) 1223–1253.

  11. Caffarelli L., Yang Y.: Vortex condensation in the Chern–Simons Higgs model: an existence theorem. Commun. Math. Phys. 168, 321–336 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chae D., Imanuvilov O.Y.: The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory. Commun. Math. Phys. 215, 119–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chae D., Tarantello G.: On planar self-dual electroweak vortices. Ann. I. H. Poincaré AN 21, 187–207 (2004)

    MathSciNet  MATH  Google Scholar 

  14. H. Chan, C.-C. Fu, and C.-S. Lin, Non-topological multi-vortex solutions to the selfdual Chern–Simons–Higgs equation, Commun. Math. Phys. 231 (2002) 189–221.

  15. Chang A., Yang P.: Conformal deformation of metrics on S 2. J. Differential Geom. 27, 259–296 (1988)

    MathSciNet  Google Scholar 

  16. Chang A., Yang P.: Prescribing Gaussian curvature on S 2, Acta Math. 159, 215–259 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chanillo S., Kiessling M.: Conformally invariant systems of nonlinear PDE of Liouville type. Geom. Funct. Analysis 5, 924–947 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chanillo S., Kiessling M.: Surfaces with prescribed scalar curvature. Duke Math. J. 105, 309–353 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Chanillo S., Kiessling M.: Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry. Commun. Math. Phys. 160, 217–238 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen S., Han X., Lozano G., Schaposnik F.A.: Existence theorems for non-Abelian Chern–Simons–Higgs vortices with flavor. J. Diff. Equat. 259, 2458–2498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen W., Li C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen W., Li C.: Qualitative properties of solutions to some nonlinear elliptic equations in \({\mathbb{R}^{2}}\). Duke Math. J. 71, 427–439 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen C.-C., Lin C.-S.: Topological degree for a mean field equation on Riemann surfaces. Comm. Pure Appl. Math. 56, 1667–1727 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. C.-C. Chen and C.-S. Lin, Mean field equation of Liouville type with singular data: topological degree, Commun. Pure Appl. Math. 68 (2014) 887–947.

  25. Cheng K.-S., Lin C.-S.: On the asymptotic behavior of the conformal Gaussian curvature equations in \({\in \mathbb{R}^{2}}\). Math. Ann. 308, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chipot M., Shafrir I., Wolansky G.: On the solutions of the Liouville systems. J. Differ. Equat. 140, 59–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Choe K.: Multiple existence results for the self-dual Chern–Simons–Higgs vortex equation. Comm. Part. Differ. Equat. 34, 1465–1507 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Choe, Asymptotic behavior of condensate solutions in the Chern–Simons–Higgs theory, J. Math. Phys. 48 (2007) 103501.

  29. K. Choe and N. Kim, Blow-up solutions of the self-dual Chern–Simons–Higgs vortex equation, Ann. I. H. Poincaré AN 25 (2008) 313–338.

  30. Choe K., Kim N., Lin C.-S.: Existence of self-dual non-topological solutions in the Chern–Simons Higgs model. Ann. I. H. Poincaré AN28, 837–852 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Choe K., Kim N., Lin C.-S.: Self-dual symmetric nontopological solutions in the SU(3) model in \({\mathbb{R}^{2}}\). Commun. Math. Phys. 334, 1–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Ding, J. Jost, J. Li, and G. Wang, Existence results for mean field equations, Ann. I. H. Poincaré AN 16 (1999) 653–666.

  33. Djadli Z.: Existence result for the mean field problem on Riemann surfaces of all genuses. Commun. Contemp. Math. 10, 205–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Dunne, Self-Dual Chern–Simons Theories, Lecture Notes in Physics, vol. m 36, Springer, Berlin, 1995.

  35. Dolbeaut J., Esteban M.J., Tarantello G.: Multiplicity results for the assigned Gauss curvature problem in \({\mathbb{R}^{2}}\). Nonlinear Anal. TMA 70, 2870–2881 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Eremenko A.: Metrics of positive curvature with conical singularities on the sphere. Proc. AMS 132, 3349–3355 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Eremenko A., Gabrielov A., Tarasov V.: Metrics with conic singularities and spherical polygons. Illinois J. Math. 58, 739–755 (2014)

    MathSciNet  MATH  Google Scholar 

  38. A. Eremenko, A. Gabrielov, and V. Tarasov, Metrics with four conic singularities and spherical quadrilaterals, Conformal Geometry and Dynamics 20 (2016) 128–175.

  39. A. Eremenko, A. Gabrielov, and V. Tarasov, Spherical quadrilaterals with three noninteger angles, arXiv: 1504.02928.

  40. Eto M., Fujimori T., Nagashima T., Nitta M., Okashi K., Sakai N.: Multiple layer structure of non-abelian vortex. Phys. Lett. B 678, 254–258 (2009)

    Article  MathSciNet  Google Scholar 

  41. F. Ezawa, Quantum Hall Effects, World Scientific, 2000.

  42. Fan Y.-W., Lee Y., Lin C.-S.: Mixed type solutions of the SU(3) models on a torus. Commun. Math. Phys. 343, 233–271 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Fontana L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. 68, 415–454 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. V.L. Ginzburg and L.D. Landau, On the theory of superconductivity, in Collected Papers of L. D. Landau (edited by D. Ter Haar), pp. 546–568, Pergamon, New York, 1965.

  45. S.B. Gudnason, Y. Jiang, and K. Konishi, Non-abelian vortex dynamics: effective worldsheet action, J. High Energy Phys. 010 (2010) 1008.

  46. Gudnason S.B.: Non-Abelian Chern–Simons vortices with generic gauge groups. Nuclear Phys. B 821, 151–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gudnason S.B.: Fractional and semi-local non-Abelian Chern–Simons vortices. Nuclear Phys. B 840, 160–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Han X., Lin C.-S., Tarantello G., Yang Y.: Chern–Simons vortices in the Gudnason model. J. Funct. Anal. 267, 678–726 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. X. Han, C.-S. Lin, and Y. Yang, Resolution of Chern–Simons–Higgs Vortex Equations, Commun. Math. Phys. 343 (2016) 701–724.

  50. X. Han and G. Tarantello, Doubly periodic self-dual vortices in a relativistic non-Abelian Chern–Simons model, Calc. Var. PDE 49 (2014) 1149–1176.

  51. X. Han and G. Tarantello, Non-topological vortex configurations in the ABJM model, arXiv: 1605.07219.

  52. Han X., Yang Y.: Relativistic Chern–Simons–Higgs vortex equations. Trans. Amer. Math. Soc. 368, 3565–3590 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Han Z.: Prescribing Gaussian curvature on S 2. Duke Math. J. 61, 679–703 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hong J., Kim Y., Pac P.-Y.: Multivortex solutions of the Abelian Chern–Simons–Higgs theory. Phys. Rev. Lett. 64, 2330–2333 (1990)

    MathSciNet  MATH  Google Scholar 

  55. Huang H.-Y., Lin C.-S.: On the entire radial solutions of the Chern-Simons SU(3) system. Comm. Math. Phys. 327, 815–848 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Jackiw R., Weinberg E.J.: Self-dual Chern–Simons vortices. Phys. Rev. Lett. 64, 2334–2337 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Jaffe and C. H. Taubes, Vortices and Monopoles, Birkhäuser, Boston, 1980.

  58. A. Jevnikar, S. Kallel, A. Malchiodi, A topological join construction and the Toda system on compact surfaces of arbitrary genus, Anal. PDE 8 (2015) 1963–2027.

  59. J. Jost, C.-S. Lin, and G. Wang, Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math. 59 (2006) 526–558.

  60. Jost J., Wang G.: Analytic aspects of the Toda system: I. A Moser–Trudinger inequality. Comm. Pure Appl. Math. 54, 1289–1319 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  61. Jost J., Wang G.: Classification of solutions of a Toda system in \({\mathbb{R}^{2}}\). Int. Math. Res. Not. 6, 277–290 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Y.-Y. Li and I. Shafrir, Blow-up analysis for Solutions of −Δu = V (x)e u in dimension two, Ind. Univ. Math. J. 43 (1994) 1255–1270.

  63. C.-S. Lin, Uniqueness of solutions to the mean field equation for the spherical Onsager vortex, Arch. Ration. Mech. Anal. 153 (2000) 153–176.

  64. C.-S. Lin, Z. Nie, and J. Wei, Classification of solutions to general Toda systems with singular sources, arXiv:1605.07759.

  65. C.-S. Lin and G. Tarantello, When “blow-up” does not imply “concentration”: A detour from Brézis–Merle’s result, C. R. Math. Acad. Sci. Paris 354 (2016) 493–498.

  66. Lin C.-S., Wei J., Ye D.: Classification and nondegeneracy of SU(n +  1) Toda system with singular sources. Invent. Math. 190, 169–207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Lin C.-S., Wei J., Zhang L.: Local profile of fully bubbling solutions to SU(n + 1) Toda systems. J. Eur Math. Soc. 18, 1707–1728 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  68. C.-S. Lin, J. Wei, and C. Zhao, Classification of blow-up limits for SU(3) singular Toda systems, Analysis and PDE 8 (2015) 807–837.

  69. C.-S. Lin, J. Wei, and C. Zhao, Sharp estimates for fully bubbling solutions of a SU(3) Toda system, Geom. Funct. Anal. 22 (2012) 1591-1635.

  70. Lin C.-S., Yan S.: Existence of bubbling solutions for Chern–Simons model on a torus. Arch. Ration. Mech. Anal. 207, 353–392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Lin C.-S., Yan S.: Bubbling solutions for relativistic abelian Chern–Simons model on a torus. Comm. Math. Phys. 297, 733–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. C.-S. Lin and L. Zhang, A topological degree counting for some Liouville systems of mean field equations, Comm. Pure Appl. Math. 64 556–590.

  73. C.-S. Lin and L. Zhang, Classification of Radial Solutions to Liouville Systems with Singularities, Discrete Contin. Dyn. Syst. A 34 (2014) 2617–2637.

  74. Lozano G., Marqués D., Moreno E.F., Schaposnik F.A.: Non-Abelian Chern–Simons vortices. Phys. Lett. B 654, 27–34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  75. Luo F., Tian G.: Liouville equation and spherical convex polytopes. Proc. Amer. Math. Soc. 116, 1119–1129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  76. Malchiodi A.: Variational theory for Liouville equations with singularities. Rend. Istit. Mat. Univ. Trieste 41, 85–95 (2009)

    MathSciNet  MATH  Google Scholar 

  77. A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, Adv. Differ. Equat. 13 (2008) 1109–1129.

  78. Malchiodi A., Ruiz D.: On the Leray-Schauder degree of the Toda system on compact surfaces. Proc. Amer. Math. Soc. 143, 2985–2990 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  79. Malchiodi A., Ruiz D.: A variational analysis of the Toda system on compact surfaces. Commun. Pure Appl. Math. 66, 332–371 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  80. Malchiodi A., Ruiz D.: New improved Moser–Trudinger inequalities and singular Liouville equations on compact surfaces. Geom. Funct. Anal. 21, 1196–1217 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. Mancini G.: Onofri-type inequalities for singular Liouville equations. J. Geom. Anal. 26, 1202–1230 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  82. A. Mohammed, J. Murugan, and H. Nastase, Towards a realization of the Condensed-Matter-Gravity correspondence in string theory via consistent abelian truncation of the Aharony–Bergman–Jafferis–Maldacena model, Phys. Rev. Lett. 109 (2012) 181601.

  83. A. Mohammed, J. Murugan, and H. Nastase, Abelian-Higgs and vortices from ABJM: towards a string realization of AdS/CMT, J. High Energy Phys. 11 (2012) 073.

  84. Nolasco M., Tarantello G.: On a sharp Sobolev-type inequality on two-dimensional compact manifolds. Arch. Ration. Mech. Anal. 145, 161–195 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  85. Nolasco M., Tarantello G.: Vortex condensates for the SU(3) Chern–Simons theory. Commun. Math. Phys. 213, 599–639 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  86. H. Ohtsuka, T. Suzuki, Blow-up analysis for SU(3) Toda system, J. Differential Equations 232 (2007), 419–40

  87. Ohtsuka H., Suzuki T.: Blow-up analysis for Liouville type equation in self-dual gauge field theories. Comm. Contemp. Math. 7, 177–205 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  88. E. Onofri, On the positivity of the effective action in a theory of random surfaces, Commun. Math. Phys. 86 (1982) 321–326.

  89. A. Poliakovsky and G. Tarantello, On a planar Liouville-type problem in the study of selfgravitating strings, J. Differ. Equat. 252 (2012) 3668–3693.

  90. A. Poliakovsky and G. Tarantello, On singular Liouville systems, Analysis and topology in nonlinear differential equations, 353–385, Progr. Nonlinear Differential Equations Appl., 85, Birkhäuser/Springer, Cham, 2014.

  91. A. Poliakovsky and G. Tarantello, On non-topological solutions for planar Liouville Systems of Toda-type, Commun. Math. Phys. DOI 10.1007/s00220-016-2662-3

  92. J. Prajapat and G. Tarantello, On a class of elliptic problems in \({\mathbb{R}^{2}}\): symmetry and uniqueness results, Proc. Royal Soc. Edinburgh 131 (2001) 967–985.

  93. Shafrir I., Wolansky G.: Moser–Trudinger type inequalities for systems in two dimensions. C.R. Math Acad. Sci. Paris 333, 439–443 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  94. Shafrir I., Wolansky G.: Moser–Trudinger and logarithmic HLS inequalities for systems. J. Eur. Math. Soc. 7, 413–448 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  95. M. Shifman and A. Yung, Supersymmetric Solitons, Cambridge U. Press, Cambridge, U. K., 2009.

  96. M. Struwe and G. Tarantello, On multivortex solutions in Chern–Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1 (1998) 109–121.

  97. Tarantello G.: Multiple condensate solutions for the Chern–Simons–Higgs theory. J. Math. Phys. 37, 3769–3796 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  98. Tarantello G.: Analytical, geometrical and topological aspects of a class of mean field equations on surfaces. Discrete Contin. Dyn. Syst. 28, 931–973 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  99. G. Tarantello, Self-Dual Gauge Field Vortices, an Analytic Approach, Progress in Nonlinear Differential Equations and Their Applications 72, Birkhäuser, Boston, Basel, Berlin, 2008.

  100. G. Tarantello, Blow up analysis for a cosmic strings equation, arXiv:1506.02018.

  101. M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991) 793–821.

  102. Wang G.: Moser–Trudinger inequalities and Liouville systems. C. R. Acad. Sci. Paris 328, 895–900 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  103. Wang R.: The existence of Chern–Simons vortices. Commun. Math. Phys. 137, 587–597 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  104. Y. Yang, The relativistic non-Abelian Chern–Simons equations, Commun. Math. Phys. 186 (1997) 199–218.

  105. Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, New York, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Tarantello.

Additional information

This work is supported by PRIN12: “Variational and Perturbative Aspects in Nonlinear Differential Problem” and by FIRB project: “Analysis and Beyond”.

Lecture given at the Seminario Matematico e Fisico di Milano by Gabriella Tarantello on February 26, 2015, on the occasion of the Luigi and Wanda Amerio Prize 2014 tributed to her by the Istituto Lombardo Accademia di Scienze e Lettere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarantello, G. Analytical Issues in the Construction of Self-dual Chern–Simons Vortices. Milan J. Math. 84, 269–298 (2016). https://doi.org/10.1007/s00032-016-0259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-016-0259-0

Navigation