Skip to main content
Log in

On Non-Topological Solutions for Planar Liouville Systems of Toda-Type

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Motivated by the study of non-abelian Chern Simons vortices of non-topological type in Gauge Field Theory, see e.g. Gudnason (Nucl Phys B 821:151–169, 2009), Gudnason (Nucl Phys B 840:160–185, 2010) and Dunne (Lecture Notes in Physics, New Series, vol 36. Springer, Heidelberg, 1995), we analyse the solvability of the following (normalised) Liouville-type system in the presence of singular sources:

$$(1)_\tau \begin{cases}-\Delta u_1 = e^{u_1} - \tau e^{u_2} - 4N \pi \, \delta_0,\\-\Delta u_2 = e^{u_2} - \tau e^{u_1},\\ \beta_1 = \frac{1}{2\pi} \int_{\mathbb{R}^{2}} e^{u_1} \, {\rm and } \, \beta_2 = \frac{1}{2\pi} \int_{\mathbb{R}^{2}} e^{u_2},\end{cases}$$

with \({\tau > 0}\) and \({N > 0}\).

We identify necessary and sufficient conditions on the parameter \({\tau}\) and the “flux” pair: \({(\beta_1, \beta_2),}\) which ensure the radial solvability of \({(1)_\tau.}\)

Since for \({\tau=\frac{1}{2},}\) problem \({(1)_\tau}\) reduces to the (integrable) 2 \({\times}\) 2 Toda system, in particular we recover the existence result of Lin et al. (Invent Math 190(1):169–207, 2012) and Jost and Wang (Int Math Res Not 6:277–290, 2002), concerning this case.

Our method relies on a blow-up analysis for solutions of \({(1)_\tau}\), which (even in the radial setting) takes new turns compared to the single equation case.

We mention that our approach also permits handling the non-symmetric case, where in each of the two equations in \({(1)_\tau}\), the parameter \({\tau}\) is replaced by two different parameters \({\tau_1 > 0}\) and \({\tau_2 > 0}\) respectively, and also when the second equation in \({(1)_\tau}\) includes a Dirac measure supported at the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ao, W., Lin, C.S., Wei, J.: On Non-topological solutions of the A 2 and B 2 Chern–Simons system. Memoirs Am. Math. Soc. (in press)

  2. Ao, W., Lin, C.S., Wei, J.: On non-topological solutions of the G 2 Chern–Simons system. Commun. Anal. Geom. (in press)

  3. Bandle C.: Isoperimetric Inequalities and Applications. Pitman, Boston (1980)

    MATH  Google Scholar 

  4. Bartolucci D., Tarantello G.: Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory. Commun. Math. Phys. 229, 3–47 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bartolucci D., Lin C.S., Tarantello G.: Uniqueness and symmetry results for solutions of a mean field equation on S 2 via a new bubbling phenomenon. Commun. Pure Appl. Math. 64(12), 1677–1730 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezis H., Merle F.: Uniform estimates and blow–up behavior for solutions of \({-\Delta u =V(x)e^{u}}\) in two dimensions. Commun. Partial Differ. Equ. 16, 1223–1253 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L., Yang Y.S.: Vortex condensation in the Chern–Simons Higgs model: an existence theorem. Commun. Math. Phys. 168, 321–336 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chae D., Imanuvilov O.: The existence of non–topological multivortex solutions in the relativistic selfdual Chern–Simons theory. Commun. Math. Phys. 215, 119–142 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chae D., Tarantello G.: Selfgravitating electroweak strings. J. Differ. Equ. 213, 146–170 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chae D., Tarantello G.: On planar selfdual electroweak vortices. Ann. Inst. H. Poincare AN. 21, 187–207 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Chan H., Fu C.C., Lin C.S.: Non-topological multi-vortex solution to the self-dual Chern–Simons–Higgs equation. Commun. Math. Phys. 231, 189–221 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chanillo S., Kiessling M.: Conformally invariant systems of nonlinear PDE of Liouville type. Geom. Funct. Anal. 5, 924–947 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chanillo S., Kiessling M.: Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry. Commun. Math. Phys. 160, 217–238 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chen R.M., Guo Y., Spirn D.: Asymptotic behaviour and symmetry of condensate solutions in electroweak theory. J. Anal. Math. 117, 47–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen S., Han X., Lozano G., Schaposnik F.A.: Existence theorems for non-Abelian Chern SimonsHiggs vortices with flavor. J. Differ. Equ. 259(6), 2458–2498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chen W., Li C.: Qualitative properties of solutions to some nonlinear elliptic equations in \({\mathbb{R}^{2}}\). Duke Math. J. 71(2), 427–439 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chen W., Li C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(2), 615–623 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Z., Lin, C.S.: Self-dual radial non-topological solutions to a competitive Chern–Simons model (2014). (preprint)

  19. Chen Z.Y., Chern J.L., Tang Y.L.: Structure of solutions to a singular Liouville system arising from modelling dissipative stationary plasma. DCDS-A 33, 3704–3714 (2013)

    MathSciNet  Google Scholar 

  20. Chen, Z.Y., Tang, Y.L.: Classification and sharp range of flux-pair for radial solutions to a coupled system (2015). (preprint)

  21. Chipot M., Shafrir I., Wolansky G.: On the solutions of the Liouville systems. J. Differ. Equ. 140(1), 59–105 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Choe K., Kim N., Lin C.S.: Existence of self-dual non-topological solutions in the Chern–Simons Higgs model. Ann. Inst. Henri Poincare AN. 28, 837–852 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Choe K., Kim N., Lin C.S.: Self-dual symmetric non-topological solutions in the SU(3) model in R 2. Commun. Math. Phys. 334(1), 1–37 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. delPino M., Esposito P., Musso M.: Nondegeneracy of entire solutions of a singular Liouville equation. Proc. A.M.S. 140(2), 581–588 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dolbeaut J., Esteban M.J., Tarantello G.: Multiplicity results for the assigned Gauss curvature problem in \({\mathbb{R}^{2}}\). Nonlinear Anal. TMS 70, 2870–2881 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dunne, G.: Self–dual Chern–Simons theories. In: Lecture Notes in Phys., New Series, vol. 36. Springer, Heidelberg (1995)

  27. Eto, M., Fujimori, T., Gudnason, S.B., Konishi, K., Nagashima, T., Nitta, M., Ohashi, K., Vinci, W.: Non–Abelian vortices in SO(N) and USp(N) gauge theories. JHEP 0906, 004 (2009). arXiv:0809.2014v2

  28. Eto, M., Fujimori, T., Gudnason, S.B., Nitta, M., Ohashi, K.: SO and USp Kahler and Hyper–Kahler quotients and lumps. Nucl. Phys. B 815, 495 (2009). arXiv:0809.2014

  29. Fortini, R., Tarantello, G.: The role of Liouville systems in the study of non–abelian Chern–Simons vortices. In: Proceeding ICMP12, XVII International Congress on Mathematical Physics, Aalborg, pp. 383–390 (2012)

  30. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  31. Greensite, J.: The confinement problem in lattice gauge theory. Prog. Part. Nucl. Phys. 51 (2003)

  32. Grossi, M., Gladiali, F., Wei, J.: On a general SU(3) Toda system. Calc. Var. PDE (to appear)

  33. Gudnason S.B.: Non–abelian Chern–Simons vortices with generic Gauge groups. Nucl. Phys. B 821, 151–169 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gudnason S.B.: Fractional and semi–local non–abelian Chern–Simons vortices. Nucl. Phys. B 840, 160–185 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Han X., Lin C.S., Tarantello G., Yang Y.: Chern–Simons vortices in the Gudnason model. J. Funct. Anal. 267, 678–726 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Han X., Tarantello G.: Doubly periodic self-dual vortices in a relativistic non-Abelian Chern–Simons model. Calc. Var. PDE 49, 1149–1176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang H.Y., Lin C.S.: On the entire radial solutions of the Chern–Simons SU(3) system. Commun. Math. Phys. 327, 815–848 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Huang H.Y., Lin C.S.: Classification of the entire radial self-dual solutions to non-abelian Chern–Simons systems. J. Funct. Anal. 266, 6796–6841 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hong J., Kim Y., Pac P.Y.: Multivortex solutions of the Abelian Chern–Simons theory. Phys. Rev. Lett. 64, 2230–2233 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Jaffe, A., Taubes, C.: Vortices and monopoles, structure of static Gauge theories. In: Progress in Physics 2, vol. 287. Birkhuser Verlag, Boston (1980)

  41. Jackiw R.W., Weinberg E.J.: Self–dual Chern–Simons vortices. Phys. Rev. Lett. 64, 2234–2237 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Jost J., Wang G.: Analytic aspects of the Toda system: I. A Moser–Trudinger inequality. Commun. Pure Appl. Math. 54, 1289–1319 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jost J., Wang G.: Classification of solutions of a Toda system in \({R^2}\). Int. Math. Res. Not. 6, 277–290 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kao H., Lee K.: Self–dual SU(3)Chern–Simons Higgs systems. Phys. Rev. D 50, 6626–6632 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  45. Kiessling M.K.H.: Symmetry results for finite temperature relativistic Thomas-Fermi equations. Commun. Math. Phys. 226, 607–626 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Kiessling M.K.H.: Statistical mechanics of classical particles with logarithmic interaction. Commun. Pure Appl. Math. 46, 27–56 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kiessling M.K.H.: Statistical mechanics approach to some problems in conformal geometry. Phys. A 79, 353–368 (2000)

    Article  MathSciNet  Google Scholar 

  48. Kiessling M.K.H., Lebowitz J.L.: Dissipative stationary plasmas: kinetic modelling Bennet pinch and generalisations. Phys. Plasmas 1, 1841–1849 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  49. Li Y.Y., Shafrir I.: Blow-up analysis for Solutions of \({-\Delta u = V(x)e^{u}}\) in dimension two. Ind. Univ. Math. J. 43(4), 1255–1270 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lin C.S.: Uniqueness of solutions to the mean field equation for the spherical Onsager vortex. Arch. Rat. Mech. Anal. 153, 153–176 (2000)

    Article  MATH  Google Scholar 

  51. Lin C.S., Wei J., Ye D.: Classification and nondegeneracy of \({SU(n+1)}\) Toda system with singular sources. Invent. Math. 190(1), 169–207 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Lin C.S., Wei J., Zhang L.: Classification of blow-up limits for SU(3) singular Toda systems. Anal. PDE 8(4), 807–837 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lin C.S., Zhang L.: Profile of bubbling solutions to a Liouville system. Ann. Inst. Henri Poincare Anal. Nonlineaire 27(1), 117–143 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Lin C.S., Zhang L.: A topological degree counting for some Liouville systems of mean field type. Commun. Pure Appl. Math. 64(4), 556–590 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lin, C.S., Zhang, L.: Classification of radial solutions to Liouville systems with singularities. arXiv:1302.3866v1

  56. Lozano, G.S., Marques, D., Moreno, E.F., Schaposnik, F.A.: Non-Abelian Chern–Simons vortices. Phys. Lett. B 657 (2007)

  57. Nolasco M., Tarantello G.: Vortex condensates for the SU(3) Chern–Simons theory. Commun. Math. Phys. 213, 599–639 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Prajapat J., Tarantello G.: On a class of elliptic problems in \({\mathbb{R}^{2}}\) : symmetry and Uniqueness results. Proc. R. Soc. Edinburgh A 131, 967–985 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. Poliakovsky A., Tarantello G.: On a planar Liouville-type problem in the study of selfgravitating strings. J. Differ. Equ. 252(5), 3668–3693 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Poliakovsky, A., Tarantello, G.: On singular Liouville systems. In: Analysis and Topology in Nonlinear Differential Equations, PNDLE 85. Birkhauser, Basel (2014)

  61. Shifman, M., Yung, A.: Supersymmetric solitons. In: Cambridge Monographs, Math. Phys. Cambridge University Press, Cambridge (2009)

  62. Spruck J., Yang Y.: Topological solutions in the self–dual Chern–Simons theory: existence and approximation. Ann. I. H. Poincare AN. 12, 75–97 (1995)

    MathSciNet  MATH  Google Scholar 

  63. Spruck J., Yang Y.: The existence of non–topological solitons in the self–dual Chern–Simons theory. Commun. Math. Phys. 149, 361–376 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Shafrir I., Wolansky G.: Moser–Trudinger type inequalities for systems in two dimensions. C. R. Math Acad. Sci. Paris 333, 439–443 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Shafrir I., Wolansky G.: Moser–Trudinger and logarithmic HLS inequalities for systems. J. Eur. Math. Soc. 7, 413–448 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. Suzuki T.: Global analysis for a two–dimensional elliptic eigenvalue problem with the exponential nonlinearity. Ann. Inst. Henri Poincare AN. 9, 367–398 (1992)

    MathSciNet  MATH  Google Scholar 

  67. Tarantello G.: Multiple condensate solutions for the Chern–Simons–Higgs theory. J. Math. Phys. 37(8), 3769–3796 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Tarantello, G.: Analytical aspects of Liouville-type equations with singular sources. In: Stationary Partial Differential Equations and their Applications, vol. 72. Birkhauser, Boston (2007)

  69. Tarantello, G.: Self–dual Gauge field vortices: an analytical approach. PNDLE, vol. 72. Birkhauser, Boston (2008)

  70. Tarantello, G.: Blow-up analysis for a cosmic strings equation. arXiv:1506.02018

  71. Wang G.: Moser–Trudinger inequality and Liouville systems. C.R.A.S. Paris serie I 328, 895–900 (1999)

    Article  ADS  MATH  Google Scholar 

  72. Yang Y.: Solitons in field theory and nonlinear analysis. In: Springer Monographs in Mathematics. Spinger, New York (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Tarantello.

Additional information

Communicated by H.-T. Yau

A. Poliakovsky was supported by the Israel Science Foundation, Grant No. 999/13”.

G. Tarantello was supported by PRIN09 project: Nonlinear elliptic problems in the study of vortices and related topics, PRIN12 project: Variational and Perturbative Aspects of Nonlinear Differential Problems and FIRB project: Analysis and Beyond.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poliakovsky, A., Tarantello, G. On Non-Topological Solutions for Planar Liouville Systems of Toda-Type. Commun. Math. Phys. 347, 223–270 (2016). https://doi.org/10.1007/s00220-016-2662-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2662-3

Navigation