Skip to main content
Log in

Existence Theorems for Vortices in the Aharony–Bergman–Jaferis–Maldacena Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A series of sharp existence and uniqueness theorems are established for the multiple vortex solutions in the supersymmetric Chern–Simons–Higgs theory formalism of Aharony, Bergman, Jaferis, and Maldacena, for which the Higgs bosons and Dirac fermions lie in the bifundamental representation of the general gauge symmetry group \({U(N)\times U(N)}\). The governing equations are of the BPS type and derived by Kim, Kim, Kwon, and Nakajima in the mass-deformed framework labeled by a continuous parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrikosov, A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1182 (1957)

    Google Scholar 

  2. Aharony, O., Bergman, O., Jaferis, D.L., Maldacena, J.: \({\mathcal{N} = 6}\) superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 0810, 091 (2008)

    Article  ADS  Google Scholar 

  3. Aubin, T.: Nonlinear Analysis on Manifolds: Monge–Ampére Equations. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  4. Auzzi, R., Kumar, S.P.: Non-Abelian vortices at weak and strong coupling in mass deformed ABJM theory. J. High Energy Phys. 071, 0910 (2009)

    MathSciNet  Google Scholar 

  5. Bagger, J., Lambert, N.: Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bagger, J., Lambert, N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bagger, J., Lambert, N.: Comments on multiple M2-branes. J. High Energy Phys. 0802, 105 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bandres, M.A., Lipstein, A.E., Schwarz, J.H.: Studies of the ABJM theory in a formulation with manifest SU(4) R-symmetry. J. High Energy Phys. 0809, 027 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Belyaev, D., Brink, L., Kim, S.-S., Ramond, P.: The BLG theory in light-cone superspace. J. High Energy Phys. 1004, 026 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bogomol’nyi, E.B.: The stability of classical solutions. Sov. J. Nucl. Phys. 24, 449–454 (1976)

    MathSciNet  Google Scholar 

  11. Caffarelli, L., Yang, Y.: Vortex condensation in the Chern–Simons Higgs model: an existence theorem. Commun. Math. Phys. 168, 321–336 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chae, D., Yu, O.: Imanuvilov, The existence of nontopological multivortex solutions in the relativistic self-dual Chern–Simons theory. Commun. Math. Phys. 215, 119–142 (2000)

    Article  ADS  MATH  Google Scholar 

  13. Chakrabortty, S., Chowdhury, S.P., Ray, K.: Some BPS configurations of the BLG theory. Phys. Lett. B 703, 172–179 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chan, H., Fu, C.C., Lin, C.S.: Non-topological multivortex solutions to the self-dual Chern–Simons–Higgs equation. Commun. Math. Phys. 231, 189–221 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chen, S., Yang, Y.: Existence of multiple vortices in supersymmetric gauge field theory. Proc. R. Soc. A 468, 3923–3946 (2012)

    Article  ADS  Google Scholar 

  16. Dunne, G.: Self-dual Chern–Simons theories. In: Lecture Notes in Physics, vol. 36. Springer, Berlin (1995)

  17. Eto, M., Isozumi, Y., Nitta, M., Ohashi, K., Sakai, N.: Moduli space of non-Abelian vortices. Phys. Rev. Lett. 96, 161601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ezhuthachan, B., Mukhi, S., Papageorgakis, C.: The power of the Higgs mechanism: higher-derivative BLG theories. J. High Energy Phys. 0904, 101 (2009)

    Article  ADS  Google Scholar 

  19. Fontana, L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. 68, 415–454 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fröhlich, J.: The fractional quantum Hall effect, Chern–Simons theory, and integral lattices. In: Proc. Internat. Congr. Math., pp. 75–105. Birkhäuser, Basel (1995)

  21. Fröhlich, J., Marchetti, P.: Quantum field theory of anyons. Lett. Math. Phys. 16, 347–358 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Fröhlich, J., Marchetti, P.: Quantum field theory of vortices and anyons. Commun. Math. Phys. 121, 177–223 (1989)

    Article  ADS  MATH  Google Scholar 

  23. Golub, G.H., Ortega J.M.: Scientific Computing and Differential Equations. Academic, San Diego (1992)

  24. Gustafson, A., Sigal, I.M., Tzaneteas, T.: Statics and dynamics of magnetic vortices and of Nielsen–Olesen (Nambu) strings. J. Math. Phys. 51, 015217 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gustavsson, A.: Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66–76 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. ’t Hooft, G.: A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys. B 153, 141–160 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hosomichi, K., Lee, K., Lee, S.: Mass-deformed Bagger–Lambert theory and its BPS objects. Phys. Rev. D 78, 066015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hong, J., Kim, Y., Pac, P.-Y.: Multivortex solutions of the Abelian Chern–Simons–Higgs theory. Phys. Rev. Lett. 64, 2330–2333 (1990)

    ADS  MathSciNet  Google Scholar 

  29. Jackiw, R., Pi, S.-Y., Weinberg, E.J.: Topological and non-topological solitons in relativistic and non-relativistic Chern–Simons theory. In: Particles, Strings and Cosmology. (Boston, 1990), pp. 573–588, World Scientific Publishing, River Edge, New Jersey (1991)

  30. Jackiw, R., Weinberg, E.J.: Self-dual Chern–Simons vortices. Phys. Rev. Lett. 64, 2334–2337 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  31. Jaffe, A., Taubes, C.H.: Vortices and Monopoles. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  32. Kim, C.: Vortex-type solutions in ABJM theory. J. Phys. (conf. series) 343, 012057 (2012)

    Article  ADS  Google Scholar 

  33. Kim, C., Kim, Y., Kwon, O.K., Nakajima, H.: Vortex-type half-BPS solitons in ABJM theory. Phys. Rev. D 80, 045013 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kim, S.K., Soh, K.S., Yee, J.H.: Index theory for the nonrelativistic Chern–Simons solitons. Phys. Rev. D 42, 4139–4144 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ladyzhenskaya, O.: Mathematical Theory of Viscous and Compressible Flow. Gordon & Breach, New York (1969)

    Google Scholar 

  36. Lieb, E.H., Yang, Y.: Non-Abelian vortices in supersymmetric gauge field theory via direct methods. Commun. Math. Phys. 313, 445–478 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Lin, C.S., Yang, Y.: Non-Abelian multiple vortices in supersymmetric field theory. Commun. Math. Phys. 304, 433–457 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Lin, C.S., Yang, Y.: Sharp existence and uniqueness theorems for non-Abelian multiple vortex solutions. Nucl. Phys. B 846, 650–676 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Manton, N.S.: First-order vortex dynamics. Ann. Phys. 256, 114–131 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Nielsen, H., Olesen, P.: Vortex-line models for dual strings. Nucl. Phys. B 61, 45–61 (1973)

    Article  ADS  Google Scholar 

  41. Nirenberg, L.: On elliptic partial differential equations. Annali della Scuola Normale Superiore di Pisa 13(3), 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  42. Nolasco, M., Tarantello, G.: Vortex condensates for the SU(3) Chern–Simons theory. Commun. Math. Phys. 213, 599–639 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Prasad, M.K., Sommerfield, C.M.: Exact classical solutions for the ’t Hooft monopole and the Julia–Zee dyon. Phys. Rev. Lett. 35, 760–762 (1975)

    Article  ADS  Google Scholar 

  44. Schwarz, J.H.: Superconformal Chern–Simons theories. J. High Energy Phys. 0411, 078 (2004)

    Article  ADS  Google Scholar 

  45. Semenoff, G.W.: Index theorems and superconducting cosmic strings. Phys. Rev. D37, 2838–2852 (1988)

    ADS  MathSciNet  Google Scholar 

  46. Spruck, J., Yang, Y.: Topological solutions in the self-dual Chern–Simons theory: existence and approximation. Ann. Inst. H. Poincaré Anal. non Linéaire 12, 75–97 (1995)

  47. Spruck, J., Yang, Y.: The existence of non-topological solitons in the self-dual Chern–Simons theory. Commun. Math. Phys. 149, 361–376 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Tarantello, G.: Multiple condensate solutions for the Chern–Simons–Higgs theory. J. Math. Phys. 37, 3769–3796 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Tarantello, G.: Self-dual Gauge field vortices. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 72. Birkhäuser, Boston (2008)

  50. Taubes, C.H.: Arbitrary N-vortex solutions to the first order Ginzburg–Landau equations. Commun. Math. Phys. 72, 277–292 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Wang, R.: The existence of Chern–Simons vortices. Commun. Math. Phys. 137, 587–597 (1991)

    Article  ADS  MATH  Google Scholar 

  52. Wang, S., Yang, Y.: Abrikosov’s vortices in the critical coupling. SIAM J. Math. Anal. 23, 1125–1140 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  53. Weinberg, E.J.: Multivortex solutions of the Ginzburg–Landau equations. Phys. Rev. D 19, 3008–3012 (1979)

    Article  ADS  Google Scholar 

  54. Wilczek, F.: Fractional Statistics and Anyonic Superconductivity. World Scientific, Singapore (1990)

    Book  Google Scholar 

  55. Yang, Y.: The relativistic non-Abelian Chern–Simons equations. Commun. Math. Phys. 186, 199–218 (1997)

    Article  ADS  MATH  Google Scholar 

  56. Yang, Y.: On a system of nonlinear elliptic equations arising in theoretical physics. J. Funct. Anal. 170, 1–36 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang, Y.: Solitons in Field Theory and Nonlinear Analysis. Springer, New York (2001)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yisong Yang.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Yang, Y. Existence Theorems for Vortices in the Aharony–Bergman–Jaferis–Maldacena Model. Commun. Math. Phys. 333, 229–259 (2015). https://doi.org/10.1007/s00220-014-2179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2179-6

Keywords

Navigation